Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T05:30:51.087Z Has data issue: false hasContentIssue false

Low-shear three-dimensional equilibria and vacuum magnetic fields with flux surfaces

Published online by Cambridge University Press:  02 April 2019

Wrick Sengupta*
Affiliation:
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
Harold Weitzner
Affiliation:
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
*
Email address for correspondence: [email protected]

Abstract

Stellarators are generically small current and low plasma beta devices. Often the construction of vacuum magnetic fields with good magnetic surfaces is the starting point for an equilibrium calculation. Although in cases with some continuous spatial symmetry, flux functions can always be found for vacuum magnetic fields, an analogous function does not, in general, exist in three dimensions. This work examines several simple equilibria and vacuum magnetic field problems with the intent of demonstrating the possibilities and limitations in the construction of such states. Starting with a simple vacuum magnetic field with closed field lines in a topological torus (toroidal shell with a flat metric), we obtain a self-consistent formal perturbation series using the amplitude of the non-symmetric vacuum fields as a small parameter. We show that systems possessing stellarator symmetry allow the construction order by order. We further indicate the significance of stellarator symmetry in the amplitude expansion of the full ideal magnetohydrodynamics (MHD) problem as well. We then investigate the conditions that guarantee neighbouring flux surfaces given the data on one surface, by expanding in the distance from that surface. We show that it is much more difficult to find low shear vacuum fields with surfaces than force-free fields or ideal MHD equilibrium. Finally, we demonstrate the existence of a class of vacuum magnetic fields, analogous to ‘snakes’ observed in tokamaks, which can be expanded to all orders.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullaev, S. S. 2006 Construction of Mappings for Hamiltonian Systems and their Applications. Springer.Google Scholar
Arnol’d, V. I. 1963 Small denominators and problems of stability of motion in classical and celestial mechanics. Russian Math. Surveys 18 (6), 85191.Google Scholar
Arnold, V. I., Kozlov, V. V. & Neishtadt, A. I. 1988 Dynamical systems, vol. iii. Encyclopaedia Math. Sci. 39.Google Scholar
Bauer, F., Betancourt, O. & Garabedian, P. 2012a A Computational Method in Plasma Physics. Springer Science & Business Media.Google Scholar
Bauer, F., Betancourt, O. & Garabedian, P. 2012b Magnetohydrodynamic Equilibrium and Stability of Stellarators. Springer Science & Business Media.Google Scholar
Brakel, R., Anton, M., Baldzuhn, J., Burhenn, R., Erckmann, V., Fiedler, S., Geiger, J., Hartfuss, H. J., Heinrich, O., Hirsch, M. et al. 1997 Confinement in W7-AS and the role of radial electric field and magnetic shear. Plasma Phys. Control. Fusion 39 (12B), B273.Google Scholar
Brakel, R.& the W7-AS Team 2002 Electron energy transport in the presence of rational surfaces in the Wendelstein 7-AS stellarator. Nucl. Fusion 42 (7), 903.Google Scholar
Cary, J. R. 1982 Vacuum magnetic fields with dense flux surfaces. Phys. Rev. Lett. 49 (4), 276.Google Scholar
Cary, J. R. & Littlejohn, R. G. 1983 Noncanonical hamiltonian mechanics and its application to magnetic field line flow. Ann. Phys. 151 (1), 134.Google Scholar
del Castillo-Negrete, D., Greene, J. M. & Morrison, P. J. 1996 Area preserving nontwist maps: periodic orbits and transition to chaos. Physica D 91 (1–2), 123.Google Scholar
Chierchia, L. & Gallavotti, G. 1982 Smooth prime integrals for quasi-integrable hamiltonian systems. Il Nuovo Cimento B 67 (2), 277295.Google Scholar
Chierchia, L. & Mather, J. N. 2010 Kolmogorov-Arnold-Moser theory. Scholarpedia 5 (9), 2123.Google Scholar
Cooper, W. A., Graves, J. P., Sauter, O., Rossel, J., Albergante, M., Coda, S., Duval, B. P., Labit, B., Pochelon, A., Reimerdes, H. et al. 2011a Helical core tokamak MHD equilibrium states. Plasma Phys. Control. Fusion 53 (12), 124005.Google Scholar
Cooper, W. A., Graves, J. P. & Sauter, O. 2011b Jet snake magnetohydrodynamic equilibria. Nucl. Fusion 51 (7), 072002.Google Scholar
Delshams, A. & De La Llave, R. 2000 KAM theory and a partial justification of greene’s criterion for nontwist maps. SIAM J. Math. Anal. 31 (6), 12351269.Google Scholar
Delshams, A. & Ramírez-Ros, R. 1998 Exponentially small splitting of separatrices for perturbed integrable standard-like maps. J. Nonlinear Sci. 8 (3), 317352.Google Scholar
Dewar, R. L. & Hudson, S. R. 1998 Stellarator symmetry. Physica D 112 (1), 275280.Google Scholar
Dobrott, D. & Frieman, E. A. 1971 Magnetic and drift surfaces using a new stellarator expansion. Phys. Fluids 14 (2), 349360.Google Scholar
Dommaschk, W. 1986 Representations for vacuum potentials in stellarators. Comput. Phys. Commun. 40 (2–3), 203218.Google Scholar
Firpo, M.-C. & Constantinescu, D. 2011 Study of the interplay between magnetic shear and resonances using hamiltonian models for the magnetic field lines. Phys. Plasmas 18 (3), 032506.Google Scholar
Freidberg, J. P. 1982 Ideal magnetohydrodynamic theory of magnetic fusion systems. Rev. Mod. Phys. 54 (3), 801.Google Scholar
Gill, R. D., Edwards, A. W., Pasini, D. & Weller, A. 1992 Snake-like density perturbations in jet. Nucl. Fusion 32 (5), 723.Google Scholar
González-Enríquez, A., Haro, A. & De la Llave, R. 2014 Singularity Theory for Non-Twist KAM Tori, vol. 227. American Mathematical Society.Google Scholar
Grad, H. 1967 Toroidal containment of a plasma. Phys. Fluids 10 (1), 137154.Google Scholar
Grad, H. 1973 Magnetofluid-dynamic spectrum and low shear stability. Proc. Natl Acad. Sci. USA 70 (12), 32773281.Google Scholar
Greene, J. M. & Johnson, J. L. 1961 Determination of hydromagnetic equilibria. Phys. Fluids 4 (7), 875890.Google Scholar
Hanson, J. D. & Cary, J. R. 1984 Elimination of stochasticity in stellarators. Phys. Fluids 27 (4), 767769.Google Scholar
Hanßmann, H. 2011 Non-degeneracy conditions in KAM theory. Indag. Math. (N.S.) 22 (3–4), 241256.Google Scholar
Hastie, R. J., Taylor, J. B. & Haas, F. A. 1967 Adiabatic invariants and the equilibrium of magnetically trapped particles. Ann. Phys. 41 (2), 302338.Google Scholar
Hirsch, M., Baldzuhn, J., Beidler, C., Brakel, R., Burhenn, R., Dinklage, A., Ehmler, H., Endler, M., Erckmann, V., Feng, Y. et al. 2008 Major results from the stellarator wendelstein 7-as. Plasma Phys. Control. Fusion 50 (5), 053001.Google Scholar
Holmes, P., Marsden, J. & Scheurle, J. 1988 Exponentially small splittings of separatrices with applications to kam theory and degenerate bifurcations. In Hamiltonian Dynamical Systems: Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference. Contemporary Mathematics, vol. 81, pp. 213244. American Mathematical Society.Google Scholar
Hudson, S. & Kraus, B. 2017 Three-dimensional magnetohydrodynamic equilibria with continuous magnetic fields. J. Plasma Phys. 83 (4), 715830403.Google Scholar
Hudson, S. R., Monticello, D. A. & Reiman, A. H. 2001 Reduction of islands in full-pressure stellarator equilibria. Phys. Plasmas 8 (7), 33773381.Google Scholar
Jaenicke, R., Ascasibar, E., Grigull, P., Lakicevic, I., Weller, A., Zippe, M., Hailer, H. & Schworer, K. 1993 Detailed investigation of the vacuum magnetic surfaces on the w7-as stellarator. Nucl. Fusion 33 (5), 687.Google Scholar
Karabanov, A. & Morozov, A. D. 2014 On degenerate resonances in hamiltonian systems with two degrees of freedom. Chaos, Solitons Fractals 69, 201208.Google Scholar
Kraus, B. F. & Hudson, S. R. 2017 Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles. Phys. Plasmas 24 (9), 092519.Google Scholar
Lichtenberg, A. J. & Lieberman, M. A. 1992 Regular and Chaotic Dynamics, 2nd edn. Springer.Google Scholar
Merkel, P. 1987 Solution of stellarator boundary value problems with external currents. Nucl. Fusion 27 (5), 867.Google Scholar
Morozov, A. D. 2002 Degenerate resonances in hamiltonian systems with 3/2 degrees of freedom. Chaos 12 (3), 539548.Google Scholar
Morrison, P. J. 2000 Magnetic field lines, hamiltonian dynamics, and nontwist systems. Phys. Plasmas 7 (6), 22792289.Google Scholar
Newcomb, W. A. 1959 Magnetic differential equations. Phys. Fluids 2 (4), 362365.Google Scholar
Pyartli, A. S. 1969 Diophantine approximations on submanifolds of euclidean space. Funct. Anal. Applics. 3 (4), 303306.Google Scholar
Sengupta, W., Hassam, A. & Antonsen, T. 2017 Sub-alfvénic reduced magnetohydrodynamic equations for tokamaks. J. Plasma Phys. 83 (3), 905830307.Google Scholar
Sengupta, W. & Weitzner, H. 2018 Radial confinement of deeply trapped particles in a non-symmetric magnetohydrodynamic equilibrium. Phys. Plasmas 25 (2), 022506.Google Scholar
Sevryuk, M. B. 1995 KAM-stable hamiltonians. J. Dyn. Control Syst. 1 (3), 351366.Google Scholar
Spies, G. O. & Lortz, D. 1971 Asymptotic magnetic surfaces. Plasma Phys. 13 (9), 799.Google Scholar
Strauss, H. R. 1980 Stellarator equations of motion. Plasma Phys. 22 (7), 733.Google Scholar
Strauss, H. R. & Monticello, D. A. 1981 Limiting beta of stellarators with no net current. Phys. Fluids 24 (6), 11481155.Google Scholar
Sugiyama, L. E. 2013 On the formation of $m=1,n=1$ density snakes. Phys. Plasmas 20 (3), 032504.Google Scholar
Weitzner, H. 2014 Ideal magnetohydrodynamic equilibrium in a non-symmetric topological torus. Phys. Plasmas 21 (2), 022515.Google Scholar
Weitzner, H. 2016 Expansions of non-symmetric toroidal magnetohydrodynamic equilibria. Phys. Plasmas 23 (6), 062512.Google Scholar
Wobig, H. 1987 Magnetic surfaces and localized perturbations in the Wendelstein VII-A stellarator. Z. Naturforsch. A 42 (10), 10541066.Google Scholar