Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T06:29:38.580Z Has data issue: false hasContentIssue false

Linear density drift instabilities in very low beta plasmas: a different approach

Published online by Cambridge University Press:  13 March 2009

S. Peter Gary
Affiliation:
Earth and Space Science Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract

This paper reports a study of the linear Vlasov electromagnetic dispersion equation for density drift instabilities in very low β plasmas. A uniform magnetic field and a weak uniform density gradient are assumed. This paper differs from most other studies of this topic in three important ways: (i) no low-frequency or long-wavelength approximations are made, (ii) no gauge condition is imposed and (iii) a modification of the local approximation is used which is argued to be less arbitrary than the usual local approximation. Numerical solution of the resulting dispersion equation yields stabilization of the universal density drift instability at values of β somewhat higher than those obtained from the local approximation, and near maximum growth shows no evidence of coupling between the universal and Alfvén modes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berk, H. L. & Dominguez, R. R. 1977 J. Plasma Phys. 18, 31.CrossRefGoogle Scholar
Davidson, R. C. 1976 Phys. Fluids, 19, 1189.CrossRefGoogle Scholar
Davidson, R. C., Gladd, N. T., Wu, C. S. & Huba, J. D. 1976 Phys. Rev. Lett. 37, 750.CrossRefGoogle Scholar
Davidson, R. C., Gladd, N. T., Wu, C. S. & Huba, J. D. 1977 Phys. Fluids 20, 301.CrossRefGoogle Scholar
Gary, S. P. 1980 Phys. Fluids, 23, 1193.CrossRefGoogle Scholar
Gary, S. P. & Gerwin, R. A. 1979 Phys. Fluids, 22, 1764.CrossRefGoogle Scholar
Gary, S. P. & Sanderson, J. J. 1978 Phys. Fluids, 21, 1181.CrossRefGoogle Scholar
Gary, S. P. & Thomsen, M. F. 1983 J. Plasma Phys. 28, 551.CrossRefGoogle Scholar
Gladd, N. T. 1976 Plasma Phys. 18, 27.CrossRefGoogle Scholar
Gladd, N. T. & Huba, J. D. 1979 Phys. Fluids, 22, 911.CrossRefGoogle Scholar
Hasegawa, A. 1971 Phys. Rev. Lett. 27, 11.CrossRefGoogle Scholar
Hasegawa, A. 1976 J. Geophys. Res. 81, 5083.CrossRefGoogle Scholar
Hastings, D. E. & McCune, J. E. 1982 Phys. Fluids, 25, 509.CrossRefGoogle Scholar
Hsia, J. B., Chiu, S. M., Hsia, M. F., Chou, R. L. & Wu, C. S. 1979 Phys. Fluids, 22, 1737.CrossRefGoogle Scholar
Huba, J. D., Drake, J. F. & Gladd, N. T. 1980 Phys. Fluida, 23, 552.CrossRefGoogle Scholar
Huba, J. D. & Gary, S. P. 1982 Phys. Fluids, 24, 1821.CrossRefGoogle Scholar
Krall, N. A. & Rosenbluth, M. N. 1963 Phys. Fluids, 6, 254.CrossRefGoogle Scholar
Lee, W. W., Chance, M. S. & Okuda, H. 1981 Phys. Rev. Lett. 46, 1675.CrossRefGoogle Scholar
Lemons, D. S. & Gary, S. P. 1978 J. Geophys. Res. 83, 1625.CrossRefGoogle Scholar
Mikhailovskii, A. B. 1974 Theory of Plasma Instabilities, vol. 2. Consultants Bureau.CrossRefGoogle Scholar
Pearlstein, L. D. 1965 Phys. Fluids, 8, 1743.CrossRefGoogle Scholar
Thomsen, M. F. & Gary, S. P. 1982 J. Geophys. Res. 87, 3551.CrossRefGoogle Scholar
Winske, D. & Gary, S. P. 1979 Phys. Fluids, 22, 665.CrossRefGoogle Scholar