Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T22:16:13.913Z Has data issue: false hasContentIssue false

Kelvin-Helmholtz instabilities of supersonic, magnetized shear layers

Published online by Cambridge University Press:  13 March 2009

S. Roy Choudhury
Affiliation:
Department of Physics, Clarkson University, Potsdam, New York 13676

Abstract

The linear stability of finite-thickness, compressible, ideal magnetohydrodynamic sheared flows along the z direction, with a magnetic field in the (y, z) plane is studied. This paper extends earlier work with the magnetic field parallel to the flow. The present formulation also includes the effects of density and pressure gradients in the equilibrium shear layer. Analytical solutions are obtained for strongly and weakly magnetized shear layers having a vortex sheet profile (where the velocity is a step function). For an equilibrium layer having a linear velocity profile, and uniform pressure and density, contour plots of the real and imaginary parts of the perturbation frequency (corresponding to unstable waves) are numerically generated in (wavenumber, Mach number) plane using a shooting technique. The structure of two distinct regimes of instability (unstable standing modes and unstable travelling modes) is mapped out for various values of the inverse plasma beta, and various angles of propagation of the mode to the flow and the magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Begelman, M. C., Blandford, R. D. & Rees, M. J. 1984 Rev. Mod. Phys. 56, 255.CrossRefGoogle Scholar
Blandford, R. D. & Pringle, J. E. 1976 Mon. Not. Roy. Astron. Soc. 176, 443.CrossRefGoogle Scholar
Blumen, W. 1970 J. Fluid Mech. 10, 769.CrossRefGoogle Scholar
Blumen, W., Drazin, P. G. & Billings, D. F. 1975 J. Fluid Mech. 71, 385.CrossRefGoogle Scholar
Brandt, J. C. & Mendis, D. A. 1979 Solar System Plasma Physics (ed. Kennel, C. F.Lanzerotti, L. J. and Parker, E. N.), vol. 2. p. 253. North-Holland.Google Scholar
Chandrasekhar, S. 1981 Hydrodynamic and Hydromagnetic Stability. Dover.Google Scholar
Chen, L. & Hasegawa, A. 1974 J. Geophys. Res. 79, 1024, 1033.CrossRefGoogle Scholar
Dobrowolny, H. & D'Angelo, N. 1972 Cosmic Plasma Physics (ed. Schindler, K.), p. 149. Plenum.CrossRefGoogle Scholar
Ershkovich, A. I., Nusmov, A. A. & Chernikov, A. A. 1972 Planet. Space Sci. 20 1235.CrossRefGoogle Scholar
Ershkovich, A. I. & Chernikov, A. A. 1973 Plant. Space Sci. 21, 663.CrossRefGoogle Scholar
Fejer, J. A. 1964 Phys. Fluids, 7, 499.CrossRefGoogle Scholar
Gerwin, R. A. 1968 Rev. Mod. Phys. 48, 652.CrossRefGoogle Scholar
Huba, J. D., Satyanarayana, P. & Lee, Y. C. 1984 Bull. Am. Phys. Soc. 29, 1192.Google Scholar
Jokipii, J. R. & Davis, L. 1969 Astrophys. J. 156, 1101.CrossRefGoogle Scholar
McKenzie, J. F. 1970 J. Geophys. Res. 75, 5331.CrossRefGoogle Scholar
Miles, J. W. 1957 J. Acoust. Soc. Am. 29, 226.CrossRefGoogle Scholar
Miura, A. 1982 Phys. Rev. Lett. 49, 779.CrossRefGoogle Scholar
Miura, A. & Pritchett, P. L. 1982 J. Geophys. Res. 87, 7431.CrossRefGoogle Scholar
Miura, A. 1984 J. Geophys. Res. 89, 801.CrossRefGoogle Scholar
Nepveu, M. 1980 Astron. Astrophys. 84, 14.Google Scholar
Norman, M. L., Smarr, L., Winkler, K. H. A. & Smith, M. D. 1982 Astron. Astrophys. 113, 285.Google Scholar
Pritchett, P. L. & Coroniti, F. V. 1984 J. Geophys. Res. 89, 168.CrossRefGoogle Scholar
Pu, Z. Y. & Kivelson, M. G. 1983 J. Geophys. Res. 88, 841, 853.CrossRefGoogle Scholar
Ray, T. P. 1982 Mon. Not. Roy. Astron. Soc. 198, 617.CrossRefGoogle Scholar
Ray, T. P. & Ershkovich, A. I. 1983 Mon. Not. Roy. Astron. Soc. 204, 821.CrossRefGoogle Scholar
Roy Choudhury, S. & Lovelace, R. V. E. 1984 Astrophys. J. 283, 331.CrossRefGoogle Scholar
Roy Choudhury, S. & Lovelace, R. V. E. 1986 Astrophys. J. (In press.)Google Scholar
Roy Choudhury, S. & Patel, V. L. 1985 Phys. Fluids, 28, 3292.CrossRefGoogle Scholar
Roy Choudhury, S. 1986 Phys. Fluids,. (In press.)Google Scholar
Satyanarayana, P., Lee, Y. C. & Huba, J. D. 1984 Bull. Am. Phys. Soc. 29, 1192.Google Scholar
Scarf, F. L., Kurth, W. S., Gurnett, D. A., Bridge, H. S. & Sullivan, J. D. 1981 Nature, 292, 585.CrossRefGoogle Scholar
Sen, A. K. 1964 Phys. Fluids, 7, 1293.CrossRefGoogle Scholar
Sen, A. K. 1965 Planet. Space Sci. 13, 131.CrossRefGoogle Scholar
Shampine, L. F. & Gordon, M. K. 1975 Computer Solution of Ordinary Differential Equations, ch. 10. Freeman.Google Scholar
Southwood, D. J., 1968 Planet. Space Sci. 16, 587.CrossRefGoogle Scholar
Southwood, D. J. 1974 Planet. Space Sci. 22, 483.CrossRefGoogle Scholar
Sturrock, P. A. & Hartle, R. E. 1966 Phys. Rev. Lett. 16, 628.CrossRefGoogle Scholar
Tajima, T. & Leboeuf, J. N. 1980 Phys. Fluids, 23, 894.Google Scholar
Talwar, S. P. 1965 Phys. Fluids, 8, 1295.CrossRefGoogle Scholar
Turland, B. D. & Scheuer, P. A. G. 1976 Mon. Not. Roy. Astron. Soc. 176, 421.CrossRefGoogle Scholar
Wu, C. C. 1984 Bull. Am. Phys. Soc. 29, 1192.Google Scholar