Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T05:56:12.811Z Has data issue: false hasContentIssue false

Ion waves, drift waves and instability in a weakly ionized magnetoplasma

Published online by Cambridge University Press:  13 March 2009

S. A. Self
Affiliation:
Institute for Plasma Research, Stanford University, Stanford, California

Abstract

A unified treatment is given of low-frequency wave propagation in a weakly ionized magnetoplasma from the fluid equations in which ion inertia is retained. An analysis is made of the instabilities which arise due to the influence of drift of the electrons relative to the ions for three cases: (a) Parallel drift, E∥B, (b) Hall drift, E∥B, and (c) Diamagnetic drift, ∇n⊥B. In all cases an ion acoustic instability is found while additionally, for (c), there is a drift instability for strong magnetic fields. The instability boundaries in parameter space are delineated. Furthermore, for a transversely bounded plasma, the roots ω(kz real) and kz(ω real) of the dispersion relations are discussed and related to experimental observables. The results are applied to an interpretation of wave propagation and instability on a cylindrical positive column for which all three types of drift are simultaneously present. The relation of this work to the inertialess theories of the current-convective and crossed-field instabilities is also discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barret, P. J. & Little, P. F. 1965 Phys. Rev. Lett. 14, 356.CrossRefGoogle Scholar
Bernstein, I. B. & Kulsrud, R. M. 1960 Phys. Fluids 3, 937.CrossRefGoogle Scholar
Briggs, R. J. 1964 Electron-Stream Interaction with Plasmas, Chap. 2. Cambridge, Mass: M.I.T. Press.Google Scholar
Brown, S. C. 1967 Basic Data of Plasma Physics, Chap. 4, 2nd Ed.M.I.T. Press.Google Scholar
Buchelnikova, N. S. 1970 Institute of Nuclear Physics, Novosibirsk, U.S.S.R., Report No INP 1–70.Google Scholar
Chen, F. F. 1964 Phys. Fluids 7, 949.CrossRefGoogle Scholar
Coppi, B., Hendel, H. W., Perkins, F. & Politzer, P. A. 1967 In Proc. Conf. on Physics of Quiescent Plasmas, Part 1, p. 201. Frascatti, Italy.Google Scholar
Crawford, F. W. & Self, S. A. 1963 Proc. VIth Conf. on Phenomena in Ionized Gases, Paris, vol. III, p. 129. Bureau des Editions, Centre d'Etudes Nucléaires de Saolay, Paris, 1964.Google Scholar
Crawford, F. W. & Kuhler, R. J. 1965 Proc. VIIth Int. Conf. on Phenomena in Ionized Gases, Belgrade, vol. II, p. 326. Gradevinska Knjiga, Boograd, Yugoslavia 1966.Google Scholar
Drummond, W. E. & Rosenbluth, M. N. 1962 Phys. Fluids 5, 1507.Google Scholar
Duncan, A. J., Forrest, J. R., Crawford, F. W. & Self, S. A. 1969 Phys. Fluids 12, 2607.CrossRefGoogle Scholar
Duncan, A. J. & Forrest, J. R. 1970 Stanford University, Institute for Plasma Research. Report no. 366.Google Scholar
von Engel, A. 1956 Ionized Gases, 2nd Ed., Chap. 4. New York: Oxford University Press.Google Scholar
Ewald, H. N., Crawford, F. W. & Self, S. A. 1967 J. Appl. Phys. 38, 2753.Google Scholar
Ewald, H. N., Crawford, F. W. & Self, S. A. 1969 Phys. Fluids 12, 305.CrossRefGoogle Scholar
Francis, D. T. 1963 J. Geophys. Res. 68, 6083.Google Scholar
Francis, G. 1956 Handb. Phys., vol. 22, Flügge, S., Editor. Berlin: Springer Verlag.Google Scholar
Galeev, A. A., Moiseev, S. S. & Sagdeev, R. Z. 1964 J. Nucl. Energy, Pt. C, 6, 645.Google Scholar
Hoh, F. C. 1963 Phys. Fluids 6, 1184.Google Scholar
Hoh, F. C. & Lehnert, B. 1960 Phys. Fluids 3, 600.Google Scholar
Johnson, R. R. & Jerde, D. A. 1962 Phys. Fluids 5, 988.Google Scholar
Kadomtsev, B. B. & Nedospasov, A. V. 1960 J. Nucl. Energy, Pt. C 1, 230.CrossRefGoogle Scholar
Kim, J. J. & Simon, A. 1969 Phys. Fluids 12, 895.CrossRefGoogle Scholar
Klarfeld, B. 1938 J. Tech. Phys. USSR 5, 913.Google Scholar
Krall, N. A. 1968 Advances in Plasma Phys., Simon, A. and Thompson, W. B. Eds., vol. 1 New York: Interscience.Google Scholar
Mumola, P. B. & Powers, E. J. 1969 a Phys. Rev. Lett. 22, 991.Google Scholar
Mumola, P. B. & Powers, E. J. 1969 b Bull. Am. Phys. Soc. 14, 1027.Google Scholar
Nishida, Y., Hatta, Y. & Sato, M. 1965 Appl. Phys. Lett. 7, 251.CrossRefGoogle Scholar
Nishida, Y., Hatta, Y. & Sato, M. 1968 J. Phys. Soc. Japan 24, 923.CrossRefGoogle Scholar
Paulikas, G. A. & Pyle, R. V. 1962 Phys. Fluids 5, 348.CrossRefGoogle Scholar
Sato, N. & Hatta, Y. 1966 a J. Phys. Soc. Japan 21, 1801.CrossRefGoogle Scholar
Sato, N. & Hatta, Y. 1965 b Phys. Lett. 20, 161.Google Scholar
Self, S. A. 1968 Stanford University Institute for Plasma Research, Report no. 265.Google Scholar
Self, S. A., Crawford, F. W. & Ewald, H. N. 1969 Phys. Fluids 12, 316.Google Scholar
Sheddield, J. 1968 Phys. Fluids 11, 222.Google Scholar
Simon, A. 1963 Phys. Fluids 6, 382.Google Scholar
Simon, A. & Shiau, J. N. 1969 Phys. Fluids 12, 2630.Google Scholar
Sleeper, A. M. & Simon, A. 1969 Bull. Am. Phys. Soc. 14, 1035.Google Scholar
Timofeev, A. V. 1964 Soviet Physics-Doklady 8, 890.Google Scholar
Tonks, L. & Langmuir, I. 1929 Phys. Rev. 33, 195.Google Scholar