Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T03:48:51.680Z Has data issue: false hasContentIssue false

Instability of electromagnetic waves with radial polarization in a rotating relativistic electron beam guided by ion channel

Published online by Cambridge University Press:  21 July 2011

SAEED MIRZANEJHAD
Affiliation:
Department of Physics, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran ([email protected])
FARSHAD SOHBATZADEH
Affiliation:
Department of Physics, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran ([email protected])
ZAHRA HEIDARI
Affiliation:
Department of Physics, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran ([email protected])

Abstract

Dispersion characteristics of electromagnetic waves with radial and azimuthal polarization in a rotating relativistic electron beam guided by an ion channel are investigated. Ion-channel electrostatic field and self-fields of relativistic electron beam were included in the formalism. It is shown that the wave with radial polarization is unstable in two regions due to coupling with fast space charge wave. The behaviors of the instability magnitude and spread are analyzed as a function of equilibrium parameters. The introduced instability can be used for amplification and production of high-intensity laser pulse with radial polarization.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Takayama, K. and Hiramatsu, S. 1998 Phys. Rev. A 37, 173.CrossRefGoogle Scholar
[2]Swanekamp, S. B., Holloway, J. P., Kammash, T. and Gilgenbach, R. M. 1992 Phys. Fluids B 4, 1332.CrossRefGoogle Scholar
[3]Caporaso, G. J., Rainer, F., Martin, W. E., Prono, D. S. and Cole, A. G. 1986 Phys. Rev. Lett. 57, 1591.CrossRefGoogle Scholar
[4]Esarey, E., Sprangle, P., Krall, J. and Ting, A. 1996 IEEE Trans. Plasma Sci. 24, 252.CrossRefGoogle Scholar
[5]Whittum, D. H., Sessler, A. M. and Dawson, J. M. 1990 Phys. Rev. Lett. 64, 3511.CrossRefGoogle Scholar
[6]Wang, S. et al. 2002 Phys. Rev. Lett. 88, 135004.CrossRefGoogle Scholar
[7]Mirzanejhad, S. and Asri, M. 2005 Phys. Plasmas, 12, 093108.CrossRefGoogle Scholar
[8]Esmaeilzadeh, M., Mehdian, H. and Willett, J. E. 2002 Phys. Plasmas 9, 670.CrossRefGoogle Scholar
[9]Mirzanejhad, S., Maraghechi, B. and Mohsenpour, T. 2006 J. Phys. D: Appl. Phys. 39, 923.CrossRefGoogle Scholar
[10]Chen, K. R., Katsouleas, T. C. and Dawson, J. M. 1990 IEEE Tran. Plasma Sci. 18, 837.CrossRefGoogle Scholar
[11]Chen, K. R., Dawson, J. M., Lin, A. T. and Katsouleas, T. 1991 Phys. Fluids B 3, 1270.CrossRefGoogle Scholar
[12]Tang, C. J., Liu, P. K. and Liu, S. G. 1996 J. Phys. D: Appl. Phys. 29, 90.CrossRefGoogle Scholar
[13]Esarey, E., Shadwick, B. A., Catrava, P. and Leemans, W. P. 2002 Phys. Rev. E 65, 056505.Google Scholar
[14]Rousse, A. et al. 2004 Phys. Rev. Lett. 93, 135005.CrossRefGoogle Scholar
[15]Liu, C. S., Tripathi, V. K. and Kumar, N. 2007 Plasma Phys. Controlled Fusion 49, 325.CrossRefGoogle Scholar
[16]Whittum, D. H. 1992 Phys. Fluids B 4, 730.CrossRefGoogle Scholar
[17]Kordbacheh, A. A., Maraghechi, B., Farokhi, B. and Willett, J. E. 2005 Phys. Plasmas 12, 113106.CrossRefGoogle Scholar
[18]Jain, K. K. and John, P. I. 1984 Plasma Phys. Control. Fusion 26, 891.CrossRefGoogle Scholar
[19]Schmekel, B. S., Lovelace, R. V. E. and Wasserman, I. M. 2005 Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 71, 046502.CrossRefGoogle Scholar
[20]Han, S. J. 1987 Phys. Rev. A 35, 3952.CrossRefGoogle Scholar
[21]Saberi, H. and Maraghechi, B. 2009 Plasma Phys. Control. Fusion 51, 075016.CrossRefGoogle Scholar
[22]Rouhani, M. H. and Maraghechi, B. 2006 Phys. Plasmas 13, 083101.CrossRefGoogle Scholar
[23]Mirzanejhad, S., Maraghechi, B., Sohbatzadeh, F. and Kamel-Jahromi, I. 2011 J. Plasma Phys., 77, 419.CrossRefGoogle Scholar
[24]Niziev, V. G. and Nesterov, A. V. 1999 J. Appl. Phys. D 32, 1455.Google Scholar
[25]Quabis, S., Dorn, R., Eberler, M., Glöckl, O. and Leuchs, G. 2002 Opt. Commun. 179, 1.CrossRefGoogle Scholar
[26]Quabis, S., Dorn, R. and Leuchs, G. 2003 Phys. Rev. Lett. 91, 23.Google Scholar
[27]Grosjean, T. and Courjon, D. 2006 Opt. Commun. 272, 314.CrossRefGoogle Scholar
[28]Kozawa, Y. and Sato, S. 2007 J. Opt. Soc. Am. A 24, 1793.CrossRefGoogle Scholar
[29]Sun, C. C. and Liu, C. K. 2003 Opt. Lett. 28, 2, 99.CrossRefGoogle Scholar
[30]Zhan, Q. 2004 Opt. Exp. 12, 3377.CrossRefGoogle Scholar
[31]Salamin, Y. I. 2007 Opt. Lett. 32, 3462.CrossRefGoogle Scholar
[32]Salamin, Y. I. 2007 Opt. Lett. 32, 90.CrossRefGoogle Scholar
[33]Manes, K. R., Rupert, V. C., Auerbach, J. M., Lee, P. and Swain, J. E. 1977 Phys. Rev. Lett. 39, 281.CrossRefGoogle Scholar
[34]Duderstadt, J. J. and Moses, G. A. 1982 Inertial Confinement Fusion. New York: John Wiley and Sons.Google Scholar
[35]Balmer, J. E. and Donaldson, T. P. 1977 Phys. Rev. Lett. 39, 1084.CrossRefGoogle Scholar
[36]Nesterov, A. V. and Niziev, V. G. 2000 J. Phys. D: Appl. Phys. 33, 1817.CrossRefGoogle Scholar
[37]Moser, T., Balmer, J., Delbeke, D., Muys, P., Verstuyft, S. and Baets, R. 2006 Appl. Opt. 45, 8517.CrossRefGoogle Scholar
[38]Nesterov, A. V., Niziev, V. G. and Yakunin, V. P. 1999 J. Phys. D: Appl. Phys. 32, 2871.CrossRefGoogle Scholar
[39]Ahmed, M. A., Schulz, J., Voss, A., Parriaux, O., Pommier, J. C. and Graf, T. 2007 Opt. Lett. 32, 1824.CrossRefGoogle Scholar
[40]Moser, T., Glur, H., Romano, V., Pigeon, F., Parriaux, O., Ahmed, M. A. and Graf, T. 2005 Appl. Phys. B 80, 707.CrossRefGoogle Scholar
[41]Kozawa, Y. and Sato, S. 2005 Opt. Lett. 30, 3063.CrossRefGoogle Scholar
[42]Yonezawa, K., Kozawa, Y. and Sato, S. 2006 Opt. Lett. 30, 2151.CrossRefGoogle Scholar
[43]Armstrong, D. J., Phillips, M. C. and Smith, A. V. 2003 Appl. Opt. 42, 3550.CrossRefGoogle Scholar
[44]Mehta, A., Brown, J. D., Srinivasan, P., Rumpf, R. C. and Johnson, E. G. 2007 Opt. Lett. 32, 1824.CrossRefGoogle Scholar
[45]Machavariani, G., Lumer, Y., Moshe, I., Meir, A. and Jackel, S. 2007 Opt. Lett. 32, 1468.CrossRefGoogle Scholar
[46]Ren, H., Lin, Y. H. and Wu, S. T. 2006 Appl. Phys. Lett. 89, 1.Google Scholar
[47]Moh, K. J., Yuan, X. C., Bu, J., Burge, R. E. and Gao, B. Z. 2007 Appl. Opt. 46, 7544.CrossRefGoogle Scholar
[48]Okamura, R., Nakamura, Y. and Kawashima, N. 1977 Plasma Phys. 19, 997.CrossRefGoogle Scholar
[49]De Jagher, P. G., Sluijter, F. W. and Hopman, H. J. 1988 Phys. Rep. 167, 177.CrossRefGoogle Scholar
[50]Chen, S. Y., Gao, M., Tang, G. J. and Peng, X. D. 2009 Phys. Plasmas 16, 062107.CrossRefGoogle Scholar
[51]Su, D. and Tang, G. J. 2009 Phys. Plasmas 16, 053101.CrossRefGoogle Scholar
[52]Mirzanejhad, S., Sohbatzadeh, F., Ghasemi, M., Sedaghat, Z. and Mahdian, Z. 2010 Phys. Plasmas 17, 053106.CrossRefGoogle Scholar