Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T11:06:25.769Z Has data issue: false hasContentIssue false

Inhomogeneous stationary states of two-dimensional magnetofluids

Published online by Cambridge University Press:  13 March 2009

Roland Calinon
Affiliation:
Département de Physique, Ecole Polytechnique Fédérale de Lausanne, CH-1007 Lausanne, Switzerland
Danilo Merlini
Affiliation:
Department of Electrical Engineering, Northeastern University, Boston, MA, and Fakultät für Physik, Universität Bielefeld

Abstract

We discuss ensemble inhomogeneous states of general two-dimensional magneto-fluids. A subclass of approximate statistical inhomogeneous states of the model equation is constructed using the principle of maximum entropy. The fields are shown to satisfy generalized nonlinear Poisson equations and some limiting cases are solved analytically. The method is then applied to a pseudo-three-dimensional model of an electromagnetic filamentation instability. The results illustrate the general role of the global constants of the motion on the nature of the statistical profiles for the fields describing the most probable states in magnetofluids.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albeverio, S. & Høegh-Krohn, R. 1979 Preprint.Google Scholar
Albeverio, S., Ribeiro De Faria, M. & Høegh-Krohn, R. 1979 J. Stat. Phys. 20, 585.CrossRefGoogle Scholar
Biskamp, D. & Horton, W. 1980 Phys. Lett. 75 A, 359.CrossRefGoogle Scholar
Calinon, R. & Merlini, D. 1979 J. Plasma Phys. 22, 385.CrossRefGoogle Scholar
Choquard, Ph. 1975 Research note Princeton-EPFL-Lausanne: On a class of charge ordered states in simple Coulomb system.Google Scholar
Fyfe, D. & Montgomery, D. 1978 Phys. Fluids, 21, 317.CrossRefGoogle Scholar
Hasegawa, A. & Mima, K. 1978 Phys. Fluids, 21, 87.CrossRefGoogle Scholar
Hildebrand, F. B. 1952 Methods of Applied Mathematics. Prentice Hall.Google Scholar
Lundgren, T. S. & Pointin, Y. B. 1977 J. Stat. Phys. 17, 323.CrossRefGoogle Scholar
Montgomery, D. & Fyfe, D. 1976 J. Plasma Phys. 16, 181.Google Scholar
Montgomery, D. & Liu, C. S. 1979 Phys. Fluids, 22, 866.CrossRefGoogle Scholar
Montgomery, D. & Joyce, G. 1974 Phys. Fluids, 17, 1139.CrossRefGoogle Scholar
Montgomery, D., Turner, L. & Vahala, G. 1979 J. Plasma Phys. 21, 239.CrossRefGoogle Scholar
Montgomery, D. & Vahala, G. 1979 J. Plasma Phys. 21, 71.CrossRefGoogle Scholar
Salmon, R. et al. 1976 J. Fluid Mech. 75, 691.CrossRefGoogle Scholar
Weibel, E. S. 1959 Phys. Rev. Lett. 2, 83.CrossRefGoogle Scholar
Williamson, J. H. 1977 J. Plasma Phys. 17, 85.CrossRefGoogle Scholar