Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T10:29:07.980Z Has data issue: false hasContentIssue false

Generation of terahertz radiation by a Hermite–Gaussian laser beam inside magnetoplasma with a density ramp

Published online by Cambridge University Press:  11 April 2023

Proxy Kad
Affiliation:
Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India
Vidisha Rana
Affiliation:
Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India
Arvinder Singh*
Affiliation:
Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India
*
Email address for correspondence: [email protected]

Abstract

In the present scheme of work, the Hermite–Gaussian (HG) laser beam dynamics has been investigated under the influence of an upward density ramp inside magnetized plasma, where both relativistic and ponderomotive nonlinearities are operative. One can achieve self-focusing of laser beam due to the change in the medium's dielectric function, which comes into operation due to the expulsion of plasma electrons from the high intensity to the low-intensity region by ponderomotive force and their motion at relativistic speeds. The dynamics of the laser beam and terahertz generation have been investigated by using the moment theory approach. It has been observed from the present analysis that the dynamics of the laser beam and the production of terahertz radiations strongly depends upon the HG laser beam and plasma parameters. In addition to this, the effect of density ramp and magnetic field has also been investigated on the efficiency of terahertz generation. It has been observed that higher-order modes of the HG laser beam play a dominant role in the production of terahertz radiations.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beard, M.C., Turner, G.M. & Schmuttenmaer, C.A. 2002 Terahertz spectroscopy. J. Phys. Chem. B 106 (29), 7146–7159.Google Scholar
Cai, Y., Brener, I., Lopata, J., Wynn, J., Pfeiffer, L. & Federici, J. 1997 Design and performance of singular electric field terahertz photoconducting antennas. Appl. Phys. Lett. 71 (15), 20762078.CrossRefGoogle Scholar
Gupta, D.N. & Jain, A. 2021 Terahertz radiation generation by a super-Gaussian laser pulse in a magnetized plasma. Optik 227, 165824.CrossRefGoogle Scholar
Hamster, H., Sullivan, A., Gordon, S., White, W. & Falcone, R.W. 1993 Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71 (17), 2725.CrossRefGoogle ScholarPubMed
Han, J.K. 2012 Terahertz medical imaging. In Convergence of Terahertz Sciences in Biomedical Systems (eds. Park, G.S., Kim, Y.H., Han, H., Han, J.K., Ahn, J., Son, J.H., Park, W.Y. & Jeong, Y.U.), pp. 351371. Springer.CrossRefGoogle Scholar
Hassan, M.B., Al-Janabi, A.H., Singh, M. & Sharma, R.P. 2012 Terahertz generation by the high intense laser beam. J. Plasma Phys. 78 (5), 553558.CrossRefGoogle Scholar
Kad, P., Choudhary, R., Bhatia, A., Walia, K. & Singh, A. 2022 Study of two cross focused Bessel–Gaussian laser beams on electron acceleration in relativistic regime. Optik 271, 170117.CrossRefGoogle Scholar
Kad, P. & Singh, A. 2022 a Coupled effect of spatio-temporal variation of Laguerre–Gaussian laser pulse on electron acceleration in magneto-plasma. Waves Random Complex Media, 119.CrossRefGoogle Scholar
Kad, P. & Singh, A. 2022 b Electron acceleration and spatio-temporal variation of Laguerre–Gaussian laser pulse in relativistic plasma. Eur. Phys. J. Plus 137 (8), 113.CrossRefGoogle Scholar
Kad, P. & Singh, A. 2022 c Spatio-temporal variation of Laguerre Gaussian laser pulse and its effect on electron acceleration. Chin. J. Phys 82, 171181.CrossRefGoogle Scholar
Kemp, M.C., Taday, P.F., Cole, B.E., Cluff, J.A., Fitzgerald, A.J. & Tribe, W.R. 2003 Security applications of terahertz technology. In Terahertz for Military and Security Applications (eds. R.J. Hwu & D.L. Woolard), vol. 5070, pp. 44–52.Google Scholar
Kim, H.T., Pathak, V.B., Hojbota, C.I., Mirzaie, M., Pae, K.H., Kim, C.M., Yoon, J.W., Sung, J.H. & Lee, S.K. 2021 Multi-GeV laser wakefield electron acceleration with PW lasers. Appl. Sci. 11 (13), 5831.CrossRefGoogle Scholar
Kumar, S., Vij, S., Kant, N. & Thakur, V. 2022 a Resonant excitation of THz radiations by the interaction of amplitude-modulated laser beams with an anharmonic CNTs in the presence of static dc electric and magnetic fields. Chin. J. Phys. 78, 453462.CrossRefGoogle Scholar
Kumar, S., Vij, S., Kant, N. & Thakur, V. 2022 b Resonant terahertz generation by cross-focusing of Gaussian laser beams in the array of vertically aligned anharmonic and magnetized CNTs. Opt. Commun. 513, 128112.CrossRefGoogle Scholar
Kumar, S., Vij, S., Kant, N. & Thakur, V. 2023 Nonlinear interaction of amplitude-modulated gaussian laser beam with anharmonic magnetized and rippled CNTs: THz generation. Braz. J. Phys. 53 (2), 37.CrossRefGoogle Scholar
Malik, A.K., Malik, H.K. & Nishida, Y. 2011 Terahertz radiation generation by beating of two spatial-Gaussian lasers. Phys. Lett. A 375 (8), 11911194.CrossRefGoogle Scholar
Miao, C., Palastro, J.P. & Antonsen, T.M. 2016 Laser pulse driven terahertz generation via resonant transition radiation in inhomogeneous plasmas. Phys. Plasmas 23 (6), 063103.CrossRefGoogle Scholar
Mori, W.B., Joshi, C., Dawson, J.M., Forslund, D.W. & Kindel, J.M. 1988 Evolution of self-focusing of intense electromagnetic waves in plasma. Phys. Rev. Lett. 60 (13), 1298.CrossRefGoogle ScholarPubMed
Niknam, A.R., Banjafar, M.R., Jahangiri, F., Barzegar, S. & Massudi, R. 2016 Resonant terahertz radiation from warm collisional inhomogeneous plasma irradiated by two Gaussian laser beams. Phys. Plasmas 23 (5), 053110.CrossRefGoogle Scholar
Saedjalil, N. & Jafari, S. 2016 Self-focusing and self-compression of a laser pulse in the presence of an external tapered magnetized density-ramp plasma. High Energy Density Phys. 19, 4857.CrossRefGoogle Scholar
Sharma, R.P., Monika, A., Sharma, P., Chauhan, P. & Ji, A. 2010 Interaction of high power laser beam with magnetized plasma and THz generation. Laser Part. Beams 28 (4), 531537.CrossRefGoogle Scholar
Sharma, V., Thakur, V. & Kant, N. 2020 Second harmonic generation of cosh-gaussian laser beam in magnetized plasma. Opt. Quant. Electron. 52 (10), 19.CrossRefGoogle Scholar
Singh, A. & Walia, K. 2010 Relativistic self-focusing and self-channeling of gaussian laser beam in plasma. Appl. Phys. B 101 (3), 617622.CrossRefGoogle Scholar
Singh, M. & Sharma, R.P. 2013 THz generation by cross-focusing of two laser beams in a rippled density plasma. Europhys. Lett. 101 (2), 25001.CrossRefGoogle Scholar
Singh, R.K., Singh, M., Rajouria, S.K. & Sharma, R.P. 2017 High power terahertz radiation generation by optical rectification of a shaped pulse laser in axially magnetized plasma. Phys. Plasmas 24 (10), 103103.CrossRefGoogle Scholar
Sobhani, H., Dadar, E. & Feili, S. 2017 Effective factors on twisted terahertz radiation generation in a rippled plasma. J. Plasma Phys. 83 (1), 655830101.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. 1976 V self focusing of laser beams in plasmas and semiconductors. In Progress in Optics (ed. Wolf, E.), vol. 13, pp. 169265. Elsevier.Google Scholar
Song, H.J. & Nagatsuma, T. 2011 Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 1 (1), 256263.CrossRefGoogle Scholar
Sun, W., Wang, X. & Zhang, Y. 2022 Terahertz generation from laser-induced plasma. Opt. Electron. Sci. 1 (8), 220003.CrossRefGoogle Scholar
Upadhyay, A. & Tripathi, V.K. 2005 Second harmonic generation in a laser channel. J. Plasma Phys. 71 (3), 359366.CrossRefGoogle Scholar
Varshney, P., Upadhayay, A., Madhubabu, K., Sajal, V. & Chakera, J.A. 2018 Strong terahertz radiation generation by cosh-gaussian laser beams in axially magnetized collisional plasma under non-relativistic ponderomotive regime. Laser Part. Beams 36 (2), 236245.CrossRefGoogle Scholar
Vlasov, S.N., Petrishchev, V.A. & Talanov, V.I. 1971 Averaged description of wave beams in linear and nonlinear media (the method of moments). Radiophys. Quant. Electron. 14 (9), 10621070.CrossRefGoogle Scholar
Wadhwa, J. & Singh, A. 2020 Enhanced second harmonic generation of Hermite–Gaussian laser beam in plasma having density transition. Laser Phys. 30 (4), 046001.CrossRefGoogle Scholar