Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T18:33:44.333Z Has data issue: false hasContentIssue false

Generalized universal instability: transient linear amplification and subcritical turbulence

Published online by Cambridge University Press:  13 July 2015

Matt Landreman*
Affiliation:
Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
Gabriel G. Plunk
Affiliation:
Max Planck Institute for Plasma Physics, 17491 Greifswald, Germany
William Dorland
Affiliation:
Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
*
Email address for correspondence: [email protected]

Abstract

In this work we numerically demonstrate both significant transient (i.e. non-modal) linear amplification and sustained nonlinear turbulence in a kinetic plasma system with no unstable eigenmodes. The particular system considered is an electrostatic slab with magnetic shear, kinetic electrons and ions, weak collisions and a density gradient, but with no temperature gradient. In contrast to hydrodynamic examples of non-modal growth and subcritical turbulence, here there is no sheared flow in the equilibrium. Significant transient linear amplification is found when the magnetic shear and collisionality are weak. It is also demonstrated that nonlinear turbulence can be sustained if initialized at sufficient amplitude. We prove that these two phenomena are related: when sustained turbulence occurs without unstable eigenmodes, states that are typical of the turbulence must yield transient linear amplification of the gyrokinetic free energy.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, I. G., Barnes, M., Cowley, S. C., Dorland, W. & Schekochihin, A. A. 2008 Linearized model Fokker–Planck collision operators for gyrokinetic simulations. I. Theory. Phys. Plasmas 15, 122509, 1–11.Google Scholar
Abel, I. G., Plunk, G. G., Wang, E., Barnes, M., Cowley, S. C., Dorland, W. & Schekochihin, A. A. 2013 Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows. Rep. Prog. Phys. 76, 116201, 1–69.Google Scholar
Antonsen, T. M. 1978 Stability of bound eigenmode solutions for the collisionless universal instability. Phys. Rev. Lett. 41, 3336.CrossRefGoogle Scholar
Banón Navarro, A.2012 Gyrokinetic large eddy simulations. PhD thesis, Université Libre de Bruxelles.Google Scholar
Barnes, M., Parra, F. I., Highcock, E. G., Schekochihin, A. A., Cowley, S. C. & Roach, C. M. 2011 Turbulent transport in tokamak plasmas with rotational shear. Phys. Rev. Lett. 106, 175004, 1–4.Google Scholar
Beer, M. A., Cowley, S. C. & Hammett, G. W. 1995 Field-aligned coordinates for nonlinear simulations of tokamak turbulence. Phys. Plasmas 2, 26872700.CrossRefGoogle Scholar
Biskamp, D. & Zeiler, A. 1995 Nonlinear instability mechanism in 3D collisional drift-wave turbulence. Phys. Rev. Lett. 74, 706709.Google Scholar
Camargo, S. J., Tippett, M. K. & Caldas, I. L. 1998 Nonmodal energetics of resistive drift waves. Phys. Rev. E 58, 36933704.Google Scholar
Camporeale, E., Passot, T. & Burgess, D. 2010 Implications of a non-modal linear theory for the marginal stability state and the dissipation of fluctuations in the solar wind. Astrophys. J. 715, 260270.Google Scholar
DelSole, T. 2004a Stochastic models of quasigeostrophic turbulence. Surv. Geophys. 25, 107149.Google Scholar
DelSole, T. 2004b The necessity of instantaneous optimals in stationary turbulence. J. Atmos. Sci. 61, 10861091.Google Scholar
Dimits, A. M., Bateman, G., Beer, M. A., Cohen, B. I., Dorland, W., Hammett, G. W., Kim, C., Kinsey, J. E., Kotschenreuther, M., Kritz, A. H., Lao, L. L., Mandrekas, J., Nevins, W. M., Parker, S. E., Redd, A. J., Shumaker, D. E., Sydora, R. & Weiland, J. 2000 Comparisons and physics basis of tokamak transport models and turbulence simulations. Phys. Plasmas 7, 969983.Google Scholar
Drake, J. F., Zeiler, A. & Biskamp, D. 1995 Nonlinear self-sustained drift-wave turbulence. Phys. Rev. Lett. 75, 42224225.Google Scholar
Farrell, B. F. & Ioannou, P. J. 1993 Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids A 5, 26002609.Google Scholar
Farrell, B. F. & Ioannou, P. J. 1996 Generalized stability theory. Part I: autonomous operators. J. Atmos. Sci. 53, 20252040.Google Scholar
Friedman, B. & Carter, T. A. 2014 Linear technique to understand non-normal turbulence applied to a magnetized plasma. Phys. Rev. Lett. 113, 205003, 1–5.Google Scholar
Friedman, B., Carter, T. A., Umansky, M. V., Schaffner, D. & Dudson, B. 2014 Energy dynamics in a simulation of LAPD turbulence. Phys. Plasmas 19, 102307, 1–12.Google Scholar
Frieman, E. A. & Chen, L. 1982 Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria. Phys. Fluids 25, 502508.Google Scholar
Galeev, A. A., Oraevsky, V. N. & Sagdeev, R. Z. 1963 Universal instability of an inhomogeneous plasma in a magnetic field. Sov. Phys. JETP 17, 615620.Google Scholar
Grossman, S. 2000 The onset of shear flow turbulence. Rev. Mod. Phys. 72, 603618.Google Scholar
Highcock, E. G., Barnes, M., Schekochihin, A. A., Parra, F. I., Roach, C. M. & Cowley, S. C. 2010 Transport bifurcation in a rotating tokamak plasma. Phys. Rev. Lett. 105, 215003, 1–4.Google Scholar
Hof, B., Westerweel, J., Schneider, T. M. & Eckhardt, B. 2006 Finite lifetime of turbulence in shear flows. Nature 443, 5962.CrossRefGoogle ScholarPubMed
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2006 Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651, 590614.Google Scholar
Kotschenreuther, M., Rewoldt, G. & Tang, W. M. 1995 Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities. Comput. Phys. Commun. 88, 128140.Google Scholar
Krall, N. A. & Rosenbluth, M. N. 1965 Universal instability in complex field geometries. Phys. Fluids 8, 14881503.Google Scholar
Landreman, M., Antonsen, T. M. Jr & Dorland, W. 2015 Universal instability for wavelengths below the ion larmor scale. Phys. Rev. Lett. 114, 095003, 1–5.Google Scholar
Newton, S. L., Cowley, S. C. & Loureiro, N. F. 2010 Understanding the effect of sheared flow on microinstabilities. Plasma Phys. Control. Fusion 52, 125001, 1–24.Google Scholar
Plunk, G. G., Helander, P., Xanthopoulos, P. & Connor, J. W. 2014 Collisionless microinstabilities in stellarators. III. The ion-temperature-gradient mode. Phys. Plasmas 21, 032112, 1–14.Google Scholar
Reddy, S. C. & Henningson, D. S. 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252, 209238.Google Scholar
Ross, D. W. & Mahajan, S. M. 1978 Are drift-wave eigenmodes unstable? Phys. Rev. Lett. 40, 324327.Google Scholar
Schekochihin, A. A., Highcock, E. G. & Cowley, S. C. 2012 Subcritical fluctuations and suppression of turbulence in differentially rotating gyrokinetic plasmas. Plasma Phys. Control. Fusion 54, 055011, 1–19.CrossRefGoogle Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Ann. Rev. Fluid Mech. 39, 129162.Google Scholar
Scott, B. D. 1990 Self-sustained collisional drift-wave turbulence in a sheared magnetic field. Phys. Rev. Lett. 65, 32893292.Google Scholar
Scott, B. D. 1992 The mechanism of self-sustainment in collisional drift wave turbulence. Phys. Fluids B 4, 24682494.Google Scholar
Squire, J. & Bhattacharjee, A. 2014a Nonmodal growth of the magnetorotational instability. Phys. Rev. Lett. 113, 025006, 1–5.Google Scholar
Squire, J. & Bhattacharjee, A. 2014b Magnetorotational instability: nonmodal growth and the relationship of global modes to the shearing box. Astrophys. J. 797, 67, 1–15.Google Scholar
Sugama, H., Okamoto, M., Horton, W. & Wakatani, M. 1996 Transport processes and entropy production in toroidal plasmas with gyrokinetic electromagnetic turbulence. Phys. Plasmas 3, 23792394.CrossRefGoogle Scholar
Tél, T. & Lai, Y.-C. 2008 Chaotic transients in spatially extended systems. Phys. Rep. 460, 245275.Google Scholar
Tillmark, N. & Alfredsson, P. H. 1992 Experiments on transition in plane Couette flow. J. Fluid Mech. 235, 89102.Google Scholar
Trefethen, L. & Embree, M. 2005 Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press.CrossRefGoogle Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.Google Scholar
Tsang, K. T., Catto, P. J., Whitson, J. C. & Smith, J. 1978 Absolute universal instability is not universal. Phys. Rev. Lett. 40, 327331.Google Scholar
Waltz, R. E. 1985 Subcritical magnetohydrodynamic turbulence. Phys. Rev. Lett. 55, 10981101.Google Scholar