Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T10:25:21.644Z Has data issue: false hasContentIssue false

Future lunar missions and investigation of dusty plasma processes on the Moon

Published online by Cambridge University Press:  27 February 2013

SERGEY I. POPEL
Affiliation:
Institute for Dynamics of Geospheres of RAS, Moscow 119334, Russia ([email protected])
LEV M. ZELENYI
Affiliation:
Space Research Institute of RAS, Moscow 117997, Russia

Abstract

From the Apollo era of exploration, it was discovered that sunlight was scattered at the terminators giving rise to “horizon glow” and “streamers” above the lunar surface. Subsequent investigations have shown that the sunlight was most likely scattered by electrostatically charged dust grains originating from the surface. A renaissance is being observed currently in investigations of the Moon. The Luna-Glob and Luna-Resource missions (the latter jointly with India) are being prepared in Russia. Some of these missions will include investigations of lunar dust. Here we discuss the future experimental investigations of lunar dust within the missions of Luna-Glob and Luna-Resource. We consider the dusty plasma system over the lunar surface and determine the maximum height of dust rise. We describe mechanisms of formation of the dusty plasma system over the Moon and its main properties, determine distributions of electrons and dust over the lunar surface, and show a possibility of rising dust particles over the surface of the illuminated part of the Moon in the entire range of lunar latitudes. Finally, we discuss the effect of condensation of micrometeoriod substance during the expansion of the impact plume and show that this effect is important from the viewpoint of explanation of dust particle rise to high altitudes in addition to the dusty plasma effects.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Colwell, J. E., Robertson, S., Horányi, M., Wang, X., Poppe, A. and Wheeler, P. 2009 Lunar dust levitation. J. Aerosp. Eng. 22, 29.CrossRefGoogle Scholar
Drolshagen, G., Dikarev, V., Landgraf, M., Krag, H. and Kuiper, W. 2008 Comparison of meteoroid flux models for near Earth space. Earth Moon Planets 102, 191197.CrossRefGoogle Scholar
Glenar, D. A., Stubbs, T. J., McCoy, J. E. and Vondrak, R. R. 2011 A reanalysis of the Apollo light scattering observations, and implications for lunar exospheric dust. Planet. Space Sci. 59, 16951707.CrossRefGoogle Scholar
Golub', A. P., Dol'nikov, G. G., Zakharov, A. V., Zelenyi, L. M., Izvekova, Yu. N., Kopnin, S. I. and Popel, S. I. 2012 Dusty plasma system in the surface layer of the illuminated part of the Moon. JETP Lett. 95, 182187.CrossRefGoogle Scholar
Kolesnikov, E. K. and Manuilov, A. S. 1982 Calculation of the electrostatic field intensity over the lunar surface covered by hydrogen monolayer. Sov. Astron. 26, 502506.Google Scholar
Kolesnikov, E. K. and Yakovlev, A. B. 1997 Condition for the electrostatic levitation of lunar-regolith microparticles. Solar Syst. Res. 31, 6264.Google Scholar
Mitrofanov, I. G., Sanin, A. B., Boynton, W. V., Chin, G., Garvin, J. B., Golovin, D., Evans, L. G., Harshman, K., Kozyrev, A. S., Litvak, M. L., et al. 2010 Hydrogen mapping of the lunar South Pole using the LRO neutron detector experiment LEND. Science 330, 483486.CrossRefGoogle ScholarPubMed
Nemtchinov, I. V., Shuvalov, V. V., Artemieva, N. A., Kosarev, I. B. and Popel, S. I. 2002 Transient atmosphere generated by large meteoroid impacts onto an atmosphereless cosmic body: gasdynamic and physical processes. Int. J. Impact Eng. 27, 521534.CrossRefGoogle Scholar
Popel, S. I. and Gisko, A. A. 2006 Charged dust and shock phenomena in the solar system. Nonlin. Proc. Geophys. 13, 223229.CrossRefGoogle Scholar
Popel, S. I., Kopnin, S. I., Yu, M. Y., Ma, J. X. and Huang, F. 2011 The effect of microscopic charged particulates in space weather. J. Phys. D: Appl. Phys. 44, 174036, 7 p.CrossRefGoogle Scholar
Rennilson, J. J. and Criswell, D. R. 1974 Surveyor observations of lunar horizon-glow. The Moon 10, 121142.CrossRefGoogle Scholar
Shukla, C. J. and Mamun, A. A. 2002 Introduction to Dusty Plasmas Physics. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
Stubbs, T. J., Vondrak, R. R. and Farrell, W. M. 2006 A dynamic fountain model for lunar dust. Adv. Space Res. 37, 5966.CrossRefGoogle Scholar
Stubbs, T. J., Vondrak, R. R., Farrell, W. M. and Collier, M. R. 2007 Predictions of dust concentrations in the lunar exosphere. J. Astronaut. 28, 166167.Google Scholar
Tsytovich, V. N., Morfill, G. E., Vladimirov, S. V. and Thomas, H. 2008 Elementary Physics of Complex Plasmas. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
Vladimirov, S. V., Ostrikov, K. and Samarian, A. A. 2005 Physics and Applications of Complex Plasmas. London: Imperial College Press.CrossRefGoogle Scholar
Zeldovich, Ya. B. and Raizer, Yu. P. 1967 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. 2. Waltham, MA: Academic Press.Google Scholar
Zook, H. A. and McCoy, J. E. 1991 Large scale lunar horizon glow and a high altitude lunar dust exosphere. Geophys. Res. Lett. 18, 21172120.CrossRefGoogle Scholar