Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T19:59:22.094Z Has data issue: false hasContentIssue false

Forced Alfvén-wave turbulence and subgrid-scale closure

Published online by Cambridge University Press:  13 March 2009

Ye Zhou
Affiliation:
Bartol Research Institute, University of Delaware, Newark, Delaware 19716, U.S.A.
George Vahala
Affiliation:
Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, U.S.A.

Abstract

The renormalization-group method is applied to the problem of forced turbulence in the simplified Alfvén model of Chen and Mahajan. The effects of small unresolvable subgrid modes on the large-scale turbulence leads to a renormalized response function ε. In certain limits, the resulting recursion relation for the response function can be converted into a differential equation that can be solved analytically. For Gaussian forcing terms satisfying a power-law wavenumber correlation k–y but white-noise frequency spectrum, it is found that the response function exhibits second-harmonic generation of waves at frequency ω = 2ΛvA for all exponents y ≥ 0, where Λ is the wavenumber separating the subgrid and supergrid modes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, C. Y. & Mahajan, S. M. 1985 Univ. Texas Rep. IFSR 179.Google Scholar
Forster, D., Nelson, D. & Stephen, M. 1977 Phys. Rev. A 16, 732.Google Scholar
Fournier, J. D. & Frisch, U. 1983 Phys Rev. A 28, 1000.Google Scholar
Dobrowolny, M., Mangeney, A. & Veltri, P. 1980 Phys. Rev. Lett. 45, 144.Google Scholar
Grappin, R., Frisch, U., Leorat, J. & Pouquet, A. 1982 Astron. Astrophys. 105, 6.Google Scholar
Kraichnan, R. H. 1965 Phys. Fluids, 8, 1385.CrossRefGoogle Scholar
Rose, H. A. 1977 J. Fluid Mech. 81, 719.Google Scholar
Schubert, M. & Wilhelmi, B. 1986 Nonlinear Optics and Quantum Electronics. Wiley.Google Scholar
Wilson, K. G. 1975 Rev. Mod. Phys. 47, 773.CrossRefGoogle Scholar
Yakhot, V. & Orszag, S. A. 1986 a Phys. Rev. Lett. 57, 1722.Google Scholar
Yakhot, V. & Orszag, S. A. 1986 b J. Sci. Comp. 1, 3.CrossRefGoogle Scholar
Zhou, Y. & Vahala, G. 1987 Phys. Lett. A 124, 355.Google Scholar
Zhou, Y. & Vahala, G. 1988 J. Plasma Phys. 39, 511.Google Scholar
Zhou, Y., Vahala, G. & Hossain, M. 1988 Phys. Rev. A 37, 2590.CrossRefGoogle Scholar