Hostname: page-component-f554764f5-fnl2l Total loading time: 0 Render date: 2025-04-21T09:29:13.192Z Has data issue: false hasContentIssue false

Experimental study on the formation and evolution of unconfined counter-helicity spheromaks merging using magnetized coaxial plasma gun

Published online by Cambridge University Press:  25 October 2024

Liangwen Qi*
Affiliation:
School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, PR China Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, PR China
Jian Song
Affiliation:
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, PR China
Fantao Zhao
Affiliation:
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, PR China
Siqi Yu
Affiliation:
Department of Physik und Astronomie, Ruhr-University Bochum, Bochum, D-44780, Germany
Chongxiao Zhao
Affiliation:
State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
Huijie Yan
Affiliation:
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, PR China
Dezhen Wang
Affiliation:
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, PR China
*
Email address for correspondence: [email protected]

Abstract

The formation and evolution of unconfined counter-helicity spheromaks merging have been experimentally investigated by using a magnetized coaxial plasma gun. By comparing the time-dependent photodiode signals and plasma radiation images of counter-helicity spheromaks merging and plasma jets merging, it is found that the field-reversed configuration (FRC) plasma formed by counter-helicity spheromaks merging has a distinct contour and a long maintenance time. For plasma jets merging, the resulting plasma has no discernible contours and a shorter lifetime. In addition, it is inferred from these data that stagnation heating and magnetic reconnection events occur during the counter-helicity spheromaks merging, causing a rapid rise in plasma pressure at the merging midplane and sharp kinks in the field lines near the merger region. By changing different operating parameters and observing the impact on the merger characteristics, it is suggested that the qualitative dynamics of the FRC plasma depends on the balance between the plasma pressure and the magnetic pressure. The high discharge voltage breaks the equilibrium in the merged body, while the large gas-puffed mass just weakens the compression effect of the merged body. These results give us an intuitive understanding of the counter-helicity spheromak merger process and its dependence on discharge parameters, and also provide a distinct perspective for the optimal design of FRC.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Belova, E.V., Davidso, R.C., Ji, H., Yamada, M., Cothra, C.D., Brown, M.R. & Schaffer, W. 2006 Numerical study of the formation, ion spin-up and nonlinear stability properties of field-reversed configurations. Nucl. Fusion 46, 162.CrossRefGoogle Scholar
Brown, M.R. & Bellan, P.M. 1992 Efficiency and scaling of current drive and refuelling by spheromak injection into a tokamak. Nucl. Fusion 32, 1125.CrossRefGoogle Scholar
Brown, M.R., Cothran, C.D., Fung, J., Chang, M., Horwitz, J., Schaffer, M.J., Leuer, J. & Belova, E.V. 2006 Dipole trapped spheromak in a prolate flux conserver. Phys. Plasmas 13, 1717.CrossRefGoogle Scholar
Brown, M.R., Cothran, C.D., Landreman, M., Schlossberg, D., Matthaeus, W.H., Qin, G., Lukin, V.S. & Gray, T. 2002 Energetic particles from three-dimensional magnetic reconnection events in the Swarthmore Spheromak Experiment. Phys. Plasmas 9, 2077.CrossRefGoogle Scholar
Byvank, T., Endrizzi, D.A., Forest, C.B., Langendorf, S.J., Mccollam, K.J. & Hsu, S.C. 2021 Formation of transient high-β plasmas in a magnetized, weakly collisional regime. J. Plasma Phys. 87, 905870202.CrossRefGoogle Scholar
Cothran, C.D., Brown, M.R., Gray, T., Schaffer, M.J. & Lukin, V.S. 2010 Observation of a nonaxisymmetric magnetohydrodynamic self-organized state. Phys. Plasmas 17, 055705.CrossRefGoogle Scholar
Cothran, C.D., Falk, A., Fefferman, A., Landreman, M., Brown, M.R. & Schaffer, M.J. 2003 Spheromak merging and field reversed configuration formation at the Swarthmore Spheromak Experiment. Phys. Plasmas 10, 1748.CrossRefGoogle Scholar
Furth, H.P. 1981 Compact torus. J. Vac. Sci. Technol. 18, 1073.CrossRefGoogle Scholar
Geddes, C.G.R., Kornack, T.W. & Brown, M.R. 1998 Scaling studies of spheromak formation and equilibrium. Phys. Plasmas 5, 1027.CrossRefGoogle Scholar
Gerhardt, S.P., Belova, E.V., Yamada, M., Ji, H. & Ren, Y. 2008 Field-reversed configuration formation scheme utilizing a spheromak and solenoid induction. Phys. Plasmas 15, 032503.CrossRefGoogle Scholar
Gray, T., Lukin, V.S., Brown, M.R. & Cothran, C.D. 2010 Three-dimensional reconnection and relaxation of merging spheromak plasmas. Phys. Plasmas 17, 102106.CrossRefGoogle Scholar
Hoffman, A.L., Guo, H.Y., Millera, K.E. & Milroy, R.D. 2006 Principal physics of rotating magnetic-field current drive of field reversed configurations. Phys. Plasmas 13, 012507.CrossRefGoogle Scholar
Horiuchi, R., Moritaka, T.A. & Usami, S. 2018 PIC simulation study of merging processes of two spheromak-like plasmoids. Plasma Fusion Res. 13, 3403035.CrossRefGoogle Scholar
Hsu, S.C. & Bellan, P.M. 2005 On the jets, kinks, and spheromaks formed by a planar magnetized coaxial gun. Phys. Plasmas 12, 032103.CrossRefGoogle Scholar
Janos, A., Hart, G.W., Nam, C.H. & Yamada, M. 1985 Global magnetic fluctuations in spheromak plasmas and relaxation toward a minimum-energy state. Phys. Fluids 28, 3667.CrossRefGoogle Scholar
Jarboe, T.R. 1994 Review of spheromak research. Plasma Phys. Control. Fusion 36, 945990.CrossRefGoogle Scholar
Jarboe, T.R. 2005 The spheromak confinement device. Phys. Plasmas 12, 058103.CrossRefGoogle Scholar
Kaminou, Y., Guo, X., Inomot, M., Ono, Y. & Horiuchi, R. 2017 Numerical study of Hall effects on counter-helicity spheromak merging by two-dimensional Hall-MHD simulations. Phys. Plasmas 24, 032508.CrossRefGoogle Scholar
Kawamori, E. & Ono, Y. 2005 Effect of ion skin depth on relaxation of merging spheromaks to a field-reversed configuration. Phys. Rev. Lett. 95, 085003.CrossRefGoogle ScholarPubMed
Kobayashi, D., Asai, T., Takahashi, T., Tatsumi, A., Sahara, N., Watanabe, T., Harashima, D., Gota, H. & Watanabe, T. 2021 Energy flow in the super alfvénic/sonic collisional merging process of field-reversed configurations. Plasma Fusion Res. 16, 2402050.CrossRefGoogle Scholar
Kornack, T.W., Sollins, P.K. & Brown, M.R. 1998 Experimental observation of correlated magnetic reconnection and Alfvénic ion jets. Phys. Rev. E 58, R36.CrossRefGoogle Scholar
Loewenhardt, P.K., Yee, J. & Bellan, P.M. 1995 Performance characterization of the Caltech corn act torus injector. Rev. Sci. Instrum. 66, 1050.CrossRefGoogle Scholar
Lukin, V.S., Qin, G., Matthaeus, W.H. & Brown, M.R. 2001 Numerical modeling of magnetohydrodynamic activity in the Swarthmore Spheromak Experiment. Phys. Plasmas 8, 1600.CrossRefGoogle Scholar
Makwana, K.D., Keppens, R. & Lapenta, G. 2018 Study of magnetic reconnection in large-scale magnetic island coalescence via spatially coupled MHD and PIC simulations. Phys. Plasmas 25, 082904.CrossRefGoogle Scholar
Matsumoto, T., Sekiguchi, J., Asai, T., Gota, H., Garate, E., Allfrey, I., Valentine, T., Morehouse, M., Roche, T., Kinley, J., Aefsky, S., Cordero, M., Waggoner, W., Binderbauer, M. & Tajima, T. 2016 Development of a magnetized coaxial plasma gun for compact toroid injection into the C-2 field-reversed configuration device. Rev. Sci. Instrum. 87, 053512.CrossRefGoogle ScholarPubMed
Moser, A.L. & Hsu, S.C. 2015 Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets. Phys. Plasmas 22, 055707.CrossRefGoogle Scholar
Nagata, M., Ogawa, H., Yatsu, S., Fukumoto, N., Kawashima, H., Tsuzuki, K., Nishino, N., Uyama, T., Kashiwa, Y., Shibata, T., Kusama, Y. 2005 Experimental studies of the dynamics of compact toroid injected into the JFT-2M tokamak. Nucl. Fusion 45, 1056.CrossRefGoogle Scholar
Nishida, K., Horiuchi, R. & Ono, Y. 2019 Analysis of energy conversion during co- and counter-helicity spheromak merging by particle-in-cell simulation. Plasma Fusion Res. 14, 3401145.CrossRefGoogle Scholar
Ono, Y., Inomoto, M., Ueda, Y., Matsuyama, T. & Okazaki, T. 1999 New relaxation of merging spheromaks to a field reversed configuration. Nucl. Fusion 39, 2001.CrossRefGoogle Scholar
Ono, Y., Yamada, M. & Akao, T. 1996 Ion acceleration and direct ion heating in three-component magnetic reconnection. Phys. Rev. Lett. 76, 3328.CrossRefGoogle ScholarPubMed
Parks, P.B. 1988 Refueling tokamaks by injection of compact toroids. Phys. Rev. Lett. 61, 1364.CrossRefGoogle ScholarPubMed
Pierce, W.F., Maqueda, R.J., Brooks, R.D. & Farengo, R. 1993 Initial results from parallel coil operation of the Coaxial Slow Source field reversed configuration device. Nucl. Fusion 33, 117.CrossRefGoogle Scholar
Pietrzyk, Z.A., Vlases, G.C., Brooks, R.D., Hahn, K.D. & Raman, R. 1987 Initial results from the coaxial slow source FRC device. Nucl. Fusion 27, 1478.CrossRefGoogle Scholar
Qi, L.W., Song, J., Zhao, C.X., Bai, X.D., Zhao, F.T., Yan, H.J., Ren, C.S. & Wang, D.Z. 2020 Research on an unconfined spheromak and its current path in a magnetized coaxial plasma gun. Phys. Plasmas 27, 122506.CrossRefGoogle Scholar
Qi, L.W., Song, J., Zhao, F.T., Zhao, C.X., Yan, H.J. & Wang, D.Z. 2021 Effects of bias magnetic field on plasma ejection and dynamic characteristics of a coaxial gun operated in gas-puffed mode. Plasma Phys. Control. Fusion 63, 115008.CrossRefGoogle Scholar
Stanic, M., Cassibry, J.T. & Adams, R.B. 2013 Project Icarus: analysis of plasma jet driven magneto-inertial fusion as potential primary propulsion driver for the Icarus probe. Acta Astronautica 86, 47.CrossRefGoogle Scholar
Steinhauer, L.C. 2011 Review of field-reversed configurations. Phys. Plasmas 18, 070501.CrossRefGoogle Scholar
Vyas, A.C. & Cassibry, J.T. 2020 AIAA propulsion and energy 2020 Forum.Google Scholar
Yamada, M., Ono, Y., Hayakawa, A., Katsurai, M. & Perkins, F.W. 1990 Magnetic reconnection of plasma toroids with cohelicity and counterhelicity. Phys. Rev. Lett. 65, 721.CrossRefGoogle ScholarPubMed
Yamada, M., Yoo, J., Jara-Almonte, J., Ji, H., Kulsrud, R.M. & Myers, C.E. 2014 Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma. Nat. Commun. 5, 4774.CrossRefGoogle ScholarPubMed
Yoo, J., Yamada, M., Ji, H. & Myers, C.E. 2013 Observation of ion acceleration and heating during collisionless magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 110, 215007.CrossRefGoogle Scholar