Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T23:10:58.676Z Has data issue: false hasContentIssue false

The equatorial current sheet and other interesting features of the pulsar magnetosphere

Published online by Cambridge University Press:  10 May 2016

Ioannis Contopoulos*
Affiliation:
Research Center for Astronomy and Applied Mathematics, Academy of Athens, 4 Soranou Efessiou Str., Athens 11527, Greece National Research Nuclear University, 31 Kashirskoe Highway, Moscow 115409, Russia
*
Email address for correspondence: [email protected]

Abstract

We want to understand what drives magnetospheric dissipation in the equatorial current sheet. Numerical simulations have limitations and, unless we have a clear a priori understanding of the physical processes involved, their results can be misleading. We argue that the canonical pulsar magnetosphere is strongly dissipative and that a large fraction (up to 30–40 % in an aligned rotator) of the spindown luminosity is redirected towards the equator where it is dissipated into particle acceleration and emission of radiation. We show that this is due to the failure of the equatorial electric current to cross the Y-point at the tip of the corotating zone.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, J. G., Giacomazzo, B., Kanner, J., Kelly, B. J. & Schnittman, J. 2013 Electromagnetic counterparts to supermassive black hole mergers. In AAS/High Energy Astrophysics Division, AAS/High Energy Astrophysics Division, vol. 13, p. 121.01.Google Scholar
Beskin, V. S.2010 MHD Flows in Compact Astrophysical Objects.Google Scholar
Cerutti, B., Philippov, A., Parfrey, K. & Spitkovsky, A. 2015a Particle acceleration in axisymmetric pulsar current sheets. Mon. Not. R. Astron. Soc. 448, 606619.Google Scholar
Cerutti, B., Philippov, A. A. & Spitkovsky, A.2015b Modeling high-energy pulsar lightcurves from first principles. ArXiv e-prints, arXiv:1511.01785.Google Scholar
Cerutti, B., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2013 Simulations of particle acceleration beyond the classical synchrotron burnoff limit in magnetic reconnection: an explanation of the Crab Flares. Astrophys. J. 770, 147.Google Scholar
Cerutti, B., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2014 Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula. Astrophys. J. 782, 104.Google Scholar
Chen, A. Y. & Beloborodov, A. M. 2014 Electrodynamics of axisymmetric pulsar magnetosphere with electron–positron discharge: a numerical experiment. Astrophys. J. Lett. 795, L22.Google Scholar
Contopoulos, I. 2005 The coughing pulsar magnetosphere. Astron. Astrophys. 442, 579586.Google Scholar
Contopoulos, I. 2007a A note on the cyclic evolution of the pulsar magnetosphere. Astron. Astrophys. 475, 639642.Google Scholar
Contopoulos, I. 2007b The magnetic field topology in the reconnecting pulsar magnetosphere. Astron. Astrophys. 472, 219223.Google Scholar
Contopoulos, I. 2007c The role of reconnection in the pulsar magnetosphere. Astron. Astrophys. 466, 301307.Google Scholar
Contopoulos, I. & Kalapotharakos, C. 2010 The pulsar synchrotron in 3D: curvature radiation. Mon. Not. R. Astron. Soc. 404, 767778.Google Scholar
Contopoulos, I., Kalapotharakos, C. & Kazanas, D. 2014 A new standard pulsar magnetosphere. Astrophys. J. 781, 46.Google Scholar
Contopoulos, I., Kazanas, D. & Fendt, C. 1999 The axisymmetric pulsar magnetosphere. Astrophys. J. 511, 351358.Google Scholar
Cowley, S. W. H. 1985 Magnetic reconnection. In Solar System Magnetic Fields (ed. Priest, E. R.), pp. 121155.Google Scholar
Goldreich, P. & Julian, W. H. 1969 Pulsar electrodynamics. Astrophys. J. 157, 869.Google Scholar
Gruzinov, A.2013 Aristotelian electrodynamics solves the pulsar: lower efficiency of strong pulsars. ArXiv e-prints, arXiv:1303.4094.Google Scholar
Gruzinov, A.2014 How pulsars shine: poynting flux annihilation. ArXiv e-prints, arXiv:1402.1520.Google Scholar
Kalapotharakos, C. & Contopoulos, I. 2009 Three-dimensional numerical simulations of the pulsar magnetosphere: preliminary results. Astron. Astrophys. 496, 495502.Google Scholar
Kalapotharakos, C., Contopoulos, I. & Kazanas, D. 2012 The extended pulsar magnetosphere. Mon. Not. R. Astron. Soc. 420, 27932798.Google Scholar
Kalapotharakos, C., Harding, A. K. & Kazanas, D. 2014 Gamma-Ray emission in dissipative pulsar magnetospheres: from theory to fermi observations. Astrophys. J. 793, 97.CrossRefGoogle Scholar
Kundt, W. 1998 Astrophysics of Neutron stars – facts and fiction about their formation and functioning. Fundamenals Cosm. Phys. 20, 1119.Google Scholar
Lovelace, R. V. E., Turner, L. & Romanova, M. M. 2006 Jets and disk winds from pulsar magnetospheres. Astrophys. J. 652, 14941498.Google Scholar
Lyubarskii, Y. E. 1990 Equilibrium of the return current sheet and the structure of the pulsar magnetosphere. Sov. Astron. Lett. 16, 16.Google Scholar
Lyubarsky, Y. & Kirk, J. G. 2001 Reconnection in a striped pulsar wind. Astrophys. J. 547, 437448.Google Scholar
Lyutikov, M., Machabeli, G. & Blandford, R. 1999 Cherenkov-curvature radiation and pulsar radio emission generation. Astrophys. J. 512, 804826.Google Scholar
McKinney, J. C. 2006 Relativistic force-free electrodynamic simulations of neutron star magnetospheres. Mon. Not. R. Astron. Soc. 368, L30L34.Google Scholar
Ogura, J. & Kojima, Y. 2003 Some properties of an axisymmetric pulsar magnetosphere constructed by numerical calculation. Prog. Theor. Phys. 109, 619630.Google Scholar
Philippov, A. A., Spitkovsky, A. & Cerutti, B. 2015 Ab initio pulsar magnetosphere: three-dimensional particle-in-cell simulations of oblique pulsars. Astrophys. J. Lett. 801, L19.CrossRefGoogle Scholar
Ponce, M., Palenzuela, C., Lehner, L. & Liebling, S. L. 2014 Interaction of misaligned magnetospheres in the coalescence of binary neutron stars. Phys. Rev. D 90 (4), 044007.Google Scholar
Sironi, L., Spitkovsky, A. & Arons, J. 2013 The maximum energy of accelerated particles in relativistic collisionless shocks. Astrophys. J. 771, 54.Google Scholar
Spitkovsky, A. 2006 Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators. Astrophys. J. Lett. 648, L51L54.Google Scholar
Tchekhovskoy, A., Spitkovsky, A. & Li, J. G. 2013 Time-dependent 3D magnetohydrodynamic pulsar magnetospheres: oblique rotators. Mon. Not. R. Astron. Soc. 435, L1L5.Google Scholar
Timokhin, A. N. 2006 On the force-free magnetosphere of an aligned rotator. Mon. Not. R. Astron. Soc. 368, 10551072.Google Scholar
Uzdensky, D. A. 2003 On the axisymmetric force-free pulsar magnetosphere. Astrophys. J. 598, 446457.Google Scholar