Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T06:52:39.825Z Has data issue: false hasContentIssue false

Electrostatic stability of electron–positron plasmas in dipole geometry

Published online by Cambridge University Press:  04 March 2018

Alexey Mishchenko*
Affiliation:
Max Planck Institute for Plasma Physics, D-17491 Greifswald, Germany
Gabriel G. Plunk
Affiliation:
Max Planck Institute for Plasma Physics, D-17491 Greifswald, Germany
Per Helander
Affiliation:
Max Planck Institute for Plasma Physics, D-17491 Greifswald, Germany
*
Email address for correspondence: [email protected]

Abstract

The electrostatic stability of electron–positron plasmas is investigated in the point-dipole and Z-pinch limits of dipole geometry. The kinetic dispersion relation for sub-bounce-frequency instabilities is derived and solved. For the zero-Debye-length case, the stability diagram is found to exhibit singular behaviour. However, when the Debye length is non-zero, a fluid mode appears, which resolves the observed singularity, and also demonstrates that both the temperature and density gradients can drive instability. It is concluded that a finite Debye length is necessary to determine the stability boundaries in parameter space. Landau damping is investigated at scales sufficiently smaller than the Debye length, where instability is absent.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biglari, H., Diamond, P. H. & Rosenbluth, M. N. 1989 Toroidal ion-pressure-gradient-driven drift instabilities and transport revisited. Phys. Fluids B 1 (1), 109118.Google Scholar
Chacón, L., Simakov, A. N., Lukin, V. S. & Zocco, A. 2008 Fast reconnection in nonrelativistic 2d electron–positron plasmas. Phys. Rev. Lett. 101, 025003.Google Scholar
Ferron, J. R., Wong, A. Y., Dimonte, G. & Leikind, B. J. 1983 Interchange stability of an axisymmetric, average minimum magnetic mirror. Phys. Fluids 26 (8), 22272233.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic Press.Google Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 1980 Table of Integrals, Series and Products. Academic Press.Google Scholar
Helander, P. 2014 Microinstability of magnetically confined electron–positron plasmas. Phys. Rev. Lett. 113, 135003+4.Google Scholar
Helander, P. 2017 Available energy and ground states of collisionless plasmas. J. Plasma Phys. 83, 715830401+20.Google Scholar
Helander, P. & Connor, J. W. 2016 Gyrokinetic stability theory of electron–positron plasmas. J. Plasma Phys. 82, 9058203+13.CrossRefGoogle Scholar
Helander, P., Mishchenko, A., Kleiber, R. & Xanthopoulos, P. 2011 Oscillations of zonal flows in stellarators. Plasma Phys. Contr. F 53 (5), 054006.Google Scholar
Isichenko, M. B., Gruzinov, A. V., Diamond, P. H. & Yushmanov, P. N. 1996 Anomalous pinch effect and energy exchange in tokamaks. Phys. Plasmas 3, 19161925.CrossRefGoogle Scholar
Kesner, J., Bromberg, L., Garnier, D. & Mauel, M. 1999 Plasma confinement in a magnetic dipole. In 17th IAEA Fusion Energy Conference, Yokahama, Japan IAEA–F1–CN–69/ICP/09, International Atomic Energy Agency.Google Scholar
Kesner, J. & Hastie, R. J. 2002 Electrostatic drift modes in a closed field line configuration. Phys. Plasmas 9, 395400.CrossRefGoogle Scholar
Kesner, J., Simakov, A. N., Garnier, D. T., Catto, P. J., Hastie, R. J., Krasheninnikov, S. I., Mauel, M. E., Pedersen, T. S. & Ramos, J. J. 2001 Dipole equilibrium and stability. Nucl. Fusion 41, 301308.Google Scholar
Kobayashi, S., Rogers, B. N. & Dorland, W. 2009 Gyrokinetic simulations of turbulent transport in a ring dipole plasma. Phys. Rev. Lett. 103, 055003.Google Scholar
Kobayashi, S., Rogers, B. N. & Dorland, W. 2010 Particle pinch in gyrokinetic simulations of closed field-line systems. Phys. Rev. Lett. 105, 235004.Google Scholar
Kouznetsov, A., Freidberg, J. P. & Kesner, J. 2007 Quasilinear theory of interchange modes in a closed field line configuration. Phys. Plasmas 14 (10), 102501.Google Scholar
Krasheninnikov, S. I., Catto, P. J. & Hazeltine, R. D. 1999 Magnetic dipole equilibrium solution at finite plasma pressure. Phys. Rev. Lett. 82, 26892692.Google Scholar
Krasheninnikov, S. I. & Catto, P. J. 2000 Effects of pressure anisotropy on plasma equilibrium in the magnetic field of a point dipole. Phys. Plasmas 7 (2), 626628.CrossRefGoogle Scholar
Krasheninnikova, N. S. & Catto, P. J. 2006 Effects of hot electrons on the stability of a dipolar plasma. Phys. Plasmas 13 (5), 052503+16.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1960 Electrodynamics of Continuous Media. Pergamon Press.Google Scholar
Mishchenko, A., Zocco, A., Helander, P. & Könies, A. 2018 Gyrokinetic stability of electron–positron-ion plasmas. J. Plasma Phys. 84 (1), 905840116.Google Scholar
Pedersen, T. S., Boozer, A. H., Dorland, W., Kremer, J. P. & Schmitt, R. 2003 Prospects for the creation of positron–electron plasmas in a non-neutral stellarator. J. Phys. B 36, 10291039.Google Scholar
Pedersen, T. S., Danielson, J. R., Hugenschmidt, C., Marx, G., Sarasola, X., Schauer, F., Schweikhard, L., Surko, C. M. & Winkler, E. 2012 Plans for the creation and studies of electron–positron plasmas in a stellarator. New J. Phys. 14, 03510+13.Google Scholar
Porazik, P. & Lin, Z. 2011 Gyrokinetic particle simulation of drift-compressional modes in dipole geometry. Phys. Plasmas 18 (7), 072107.CrossRefGoogle Scholar
Ricci, P., Rogers, B. N. & Dorland, W. 2006a Small-scale turbulence in a closed-field-line geometry. Phys. Rev. Lett. 97, 245001.CrossRefGoogle Scholar
Ricci, P., Rogers, B. N., Dorland, W. & Barnes, M. 2006b Gyrokinetic linear theory of the entropy mode in a z pinch. Phys. Plasmas 13 (6), 062102.CrossRefGoogle Scholar
Saitoh, H., Stanja, J., Stenson, E. V., Hergenhahn, U., Niemann, H., Pedersen, T. S., Stoneking, M. R., Piochacz, C. & Hugenschmidt, C 2015 Efficient injection of an intense positron beam into a dipole magnetic field. New J. Phys. 17, 103038+9.Google Scholar
Simakov, A. N., Catto, P. J. & Hastie, R. J. 2001 Kinetic stability of electrostatic plasma modes in a dipolar magnetic field. Phys. Plasmas 8, 44144426.Google Scholar
Simakov, A. N., Catto, P. J., Krasheninnikov, S. I. & Ramos, J. J. 2000a Ballooning stability of a point dipole equilibrium. Phys. Plasmas 7 (6), 25262529.Google Scholar
Simakov, A. N., Catto, P. J., Ramos, J. J. & Hastie, R. J. 2002a Resistive stability of magnetic dipole and other axisymmetric closed field line configurations. Phys. Plasmas 9 (12), 49854995.Google Scholar
Simakov, A. N., Hastie, R. J. & Catto, P. J. 2000b Anisotropic pressure stability of a plasma confined in a dipole magnetic field. Phys. Plasmas 7 (8), 33093318.CrossRefGoogle Scholar
Simakov, A. N., Hastie, R. J. & Catto, P. J. 2002b Long mean-free path collisional stability of electromagnetic modes in axisymmetric closed magnetic field configurations. Phys. Plasmas 9, 201211.Google Scholar
Simpson, J., Lane, J., Immer, C. & Youngquist, R.2001 Simple analytic expressions for the magnetic field of a circular current loop. NASA Tech. Rep. Server.Google Scholar
Sugama, H. 1999 Damping of toroidal ion temperature gradient modes. Phys. Plasmas 6 (9), 35273535.Google Scholar
Warren, H. P. & Mauel, M. E. 1995 Wave-induced chaotic radial transport of energetic electrons in a laboratory terrella experiment. Phys. Plasmas 2 (11), 41854194.Google Scholar
Wong, H. V., Horton, W., Van Dam, J. W. & Crabtree, C. 2001 Low frequency stability of geotail plasma. Phys. Plasmas 8, 24152424.CrossRefGoogle Scholar
Xie, H., Zhang, Y., Huang, Z., Ou, W. & Li, B. 2017 Local gyrokinetic study of electrostatic microinstabilities in dipole plasmas. Phys. Plasmas 24 (12), 122115.Google Scholar
Yoshida, Z., Saitoh, H., Morikawa, J., Yano, Y., Watanabe, S. & Ogawa, Y. 2010 Magnetospheric vortex formation: self-organized confinement of charged particles. Phys. Rev. Lett. 104, 235004.Google Scholar
Zocco, A. 2017 Slab magnetised non-relativistic low-beta electron–positron plasmas: collisionless heating, linear waves and reconnecting instabilities. J. Plasma Phys. 83, 715830602+17.Google Scholar