Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T07:12:29.585Z Has data issue: false hasContentIssue false

Electron-Cyclotron maser emission from streaming distributions

Published online by Cambridge University Press:  13 March 2009

A. J. Willes
Affiliation:
Department of Theoretical Physics and Research Center for Theoretical Astrophysics, School of Physics, University of Sydeny, NSW 2006, Australia

Abstract

Motivated by the need to explain observed elliptically polarized emission from Jupiter, the mechanism of electron-cyclotron maser emission is considered for drifting electron distributions, where the electrons stream with a non-zero mean velocity parallel to the magnetic field lines. An analytical expression for the semirelativistic growth rate is derived and its properties analysed in detail for waves generated in the magneto-ionic modes. The main features of the growth rate are discussed, on the basis of a geometric analysis using resonant ellipses.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.Google Scholar
Arunasalam, V., Efthimion, P. C., Hosea, J. C., Hsuan, H. & Taylor, G. 1987 Phys. Rev. A 36, 3909.CrossRefGoogle Scholar
Bornatici, M., Cano, R., De Barbieri, O. & Engelmann, F. 1983 Nucl. Fusion 23, 1153.CrossRefGoogle Scholar
Bornatici, M., Chiozzi, G. & De Chiara, P. 1990 J. Plasma Phys. 44, 319.CrossRefGoogle Scholar
Bonatici, M. & Ruffina, U. 1988 Plasma Phys. Contr. Fusion 30, 113.Google Scholar
Bornatici, M., Ruffina, U. & Westerhof, E. 1985 Comments Plasma Phys. Contr. Fusion 9, 73.Google Scholar
Bormatici, M., Ruffina, U. & Westerhof, E. 1986 Plasma Phys. Contr. Fusion 28, 629.CrossRefGoogle Scholar
Bornatici, M., Ruffina, U. & Westerhof, E. 1989 Plasma Phys. Contr. Fusion 31, 221.CrossRefGoogle Scholar
Dory, R. A., Guest, G. E. & Harris, E. G. 1965 Phys. Rev. Leti. 14, 131.CrossRefGoogle Scholar
Fidone, I., Giruzzi, G., Granata, G., Krivenski, V., Meyer, R. L., Bornatici, M. & Mazzucato, E. 1989 Phys. Fluids B 1, 1937.CrossRefGoogle Scholar
Hewitt, R. G. & Melrose, D. B. 1983 Aust. J. Phys. 36, 725CrossRefGoogle Scholar
Hewitt, R. G., Melrose, D. B. & Rönnmark, K. G. 1981 Proc. Astron. Soc. Aust. 4, 226.CrossRefGoogle Scholar
Hewitt, R. G., Melrose, D. B. & Rönnmark, K. G. 1982 Aust. J. Phys. 35, 447.CrossRefGoogle Scholar
Melrose, D. B. 1986 Instabilities in Space and Laboratory Plasmas. Cambridge University Press.CrossRefGoogle Scholar
Melrose, D. B. & Dtjlk, G. A. 1982 Astrophys. J. 259, 844.Google Scholar
Melrose, D. B. & DULK, G. A. 1991 Astron. Astrophys. 249, 250.Google Scholar
Melrose, D. B. & DULK, G. A. 1993 Planet. Space Sci. 41, 333.Google Scholar
Melrose, D. B. & Mcphedran, R. C. 1991 Electromagnetic Processes in Dispersive Media. Cambridge University Press.CrossRefGoogle Scholar
Melrose, D. B. & Ronnmark, K. G. & Hewitt, R. G. 1982 J. Geophys. Res. 87, 5140.Google Scholar
Pritchett, P. L. 1984 J. Geophys. Res. 89, 8957.Google Scholar
Robinson, P. A. 1986a J. Math. Phys. 27, 1206.Google Scholar
Robinson, P. A. 1986b J. Plasma Phys. 35, 187.Google Scholar
Robinson, P. A. 1987 J. Plasma Phys. 37, 149.Google Scholar
Shkarofsky, I. P. 1966 Phys. Fluids 9, 561.CrossRefGoogle Scholar
Strangeway, R. J. 1985 J. Geophys. Res. 90, 9675.Google Scholar
Strangeway, R. J. 1986 J. Geophys. Res. 91, 3152.Google Scholar
Willes, A. J., Melrose, D. B. & Robinson, P. A. 1994 J. Geophys. Res. (submitted).Google Scholar
Winglee, R. M. 1983 J. Plasma Phys. 25, 217.Google Scholar
Winglee, R. M. 1985 Astrophys. J. 291, 160.Google Scholar
Wu, C. S. & Lee, L. C. 1979 Astrophys. J. 230, 621.Google Scholar
Yoon, P. H. & Chang, T. 1989 J. Plasma Phys. 42, 193.Google Scholar