Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T22:37:24.613Z Has data issue: false hasContentIssue false

Effect of the general loss-cone distribution function on kinetic Alfvén waves—a kinetic approach

Published online by Cambridge University Press:  01 December 2007

NIDHI SHUKLA
Affiliation:
Department of Physics and Electronics, Dr. H. S. Gour University, Sagar (M.P.)—470003, India ([email protected])
P. VARMA
Affiliation:
Department of Physics and Electronics, Dr. H. S. Gour University, Sagar (M.P.)—470003, India ([email protected])
M.S. TIWARI
Affiliation:
Department of Physics and Electronics, Dr. H. S. Gour University, Sagar (M.P.)—470003, India ([email protected])

Abstract

Kinetic Alfvén waves are investigated in the presence of a general loss-cone distribution function including finite electron pressure and ion-gyroradius effects. The dispersion relation and damping/growth rate are evaluated for different electron to ion temperature ratios, Te/Ti, using a kinetic approach. The wave frequency ω and damping/growth rate γL are evaluated for two regimes of propagation, kρi < 1 and kρi > 1, where k is the perpendicular wave number and ρi is the ion-gyroradius. An enhancement of the wave frequency and a reduction in the damping rate are predicted by steep loss-cone distribution indices and Te/Ti. The growth of the wave is also noticed at higher values of the distribution index and lower Te/Ti. Plasma parameters appropriate to the plasma sheet boundary layer (PSBL) are used to discuss the propagation of kinetic Alfvén waves from the PSBL to the auroral ionosphere.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Dory, R. A., Guest, G. E. and Harris, E. G. 1965 Phys. Rev. Lett. 14, 131.CrossRefGoogle Scholar
[2]Goswami, B. N. and Buti, B. 1975 Nucl. Fusion 15, 991.CrossRefGoogle Scholar
[3]Hirose, A. 1976 Phys. Fluids 19, 272.CrossRefGoogle Scholar
[4]Gomberoff, L. and Cuperman, S. 1981 J. Plasma Phys. 25, 99.CrossRefGoogle Scholar
[5]Wong, H. K., Wu, C. S. and Gaffey, J. D. Jr 1985 Phys. Fluids 28, 2751.CrossRefGoogle Scholar
[6]Summers, D. and Thorne, R. M. 1995 J. Plasma Phys. 53, 293.CrossRefGoogle Scholar
[7]Gaelzer, R., Schneider, R. S. and Ziebell, I. F. 1997 Phys. Rev. E 55, 5859.Google Scholar
[8]Mishra, R. and Tiwari, M. S. 2006 Planet. Space Sci. 54, 188.CrossRefGoogle Scholar
[9]Ahirwar, G., Varma, P. and Tiwari, M. S. 2006 Ann. Geophys. 24, 1919.CrossRefGoogle Scholar
[10]Ahirwar, G., Varma, P. and Tiwari, M. S. 2007 Ann. Geophys. (in press).Google Scholar
[11]Baronia, A. and Tiwari, M. S. 1999 Planet. Space Sci. 47, 1111.CrossRefGoogle Scholar
[12]Dwivedi, A. K., Varma, P. and Tiwari, M. S. 2001 Planet. Space Sci. 49, 993.CrossRefGoogle Scholar
[13]Duan, S. P., Li, Z. Y. and Liu, Z. X. 2005 Planet. Space Sci. 53, 1167.CrossRefGoogle Scholar
[14]Tiwari, M. S. and Varma, P. 1991 J. Plasma Phys. 46, 49.CrossRefGoogle Scholar
[15]Tiwari, M. S. and Varma, P. 1993 Planet. Space Sci. 41, 199.CrossRefGoogle Scholar
[16]Varma, P. and Tiwari, M. S. 1991 Phys. Scripta 44, 296.CrossRefGoogle Scholar
[17]Varma, P. and Tiwari, M. S. 1993 Indian J. Pure Appl. Phys. 31, 616.Google Scholar
[18]Hasegawa, A. 1976 J. Geophys. Res. 81, 5083.CrossRefGoogle Scholar
[19]Wygant, J. R. et al. 2000 J. Geophys. Res. 105, 18 675.Google Scholar
[20]Wygant, J. R. et al. 2002 J. Geophys. Res. 107, 1201.Google Scholar
[21]Cranmer, S. R. and Van-Ballegooijen, A. A. 2003 Astrophys. J. 594, 573.CrossRefGoogle Scholar
[22]Ding, N., Huang, L. and Qiu, X. M. 1998 Phys. Plasmas 3, 2293.CrossRefGoogle Scholar
[23]Tsypin, V. S., Elfimov, A. G., de-Azevedo, C. A. and de-Assis, A. S. 1998 J. Plasma Phys. 60, 289.CrossRefGoogle Scholar
[24]Chaston, C. C., Carlson, C. W., Ergun, R. E. and McFadden, J. P. 2000 Phys. Scripta T84, 64.CrossRefGoogle Scholar
[25]Chaston, C. C., Bonnell, J. W., Peticolas, L. M., Carlson, C. W., McFadden, J. P. and Ergun, R. E. 2002 Geophys. Res. Lett. 29, 10.1029/2001GL013842.CrossRefGoogle Scholar
[26]Schriver, D., Ashour-Abdalla, M., Strangeway, R. J., Richard, R. L., Klezting, C., Dotan, Y. and Wygant, J. 2003 J. Geophys. Res. 108, 8020. 10/10292002JA009426.Google Scholar
[27]Varma, P. and Tiwari, M. S. 1991 Phys. Scripta 45, 275.CrossRefGoogle Scholar
[28]Davidson, R. C. 1983 Basic plasma physics. Hand Book of Plasma Physics, Vol. 1 (ed. Rosenbluth, M. N. and Sagdeev, R. I.). Amsterdam: North-Holland.Google Scholar
[29]Krall, N. A. and Trivelpiece, A. W. 1973 Principles of Plasma Physics. San Francisco, CA: San Francisco Press, p. 349.Google Scholar
[30]Sallimullah, M. and Rosenberg, M. 1999 Phys. Lett. A 254, 347.CrossRefGoogle Scholar