Published online by Cambridge University Press: 01 October 1997
The effect of finite plasma rotation on the equilibrium of an axisymmetric toroidal magnetic trap is investigated. The nonlinear vector equations describing the equilibrium of a highly conducting, current-carrying plasma are reduced to a set of scalar partial differential equations. Based on Shafranov's well-known tokamak model, this set of equations is employed for the description of a kinetic (stationary) plasma equilibrium. Analytical expressions for the Shafranov shift Δ are found for the case of finite plasma rotation, where two regions of possible plasma equilibria are found corresponding to sub- and super-Alfvénic poloidal rotation. The shift Δ itself, however, turns out to depend essentially on the toroidal rotation only. It is shown that in the case of a stationary plasma flow, the solution of the Grad–Shafranov equation is at the same time also the solution of the stationary Strauss equation.