Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T15:54:22.221Z Has data issue: false hasContentIssue false

Effect of initial conditions on electron–plasma turbulence: a multiresolution analysis

Published online by Cambridge University Press:  13 July 2015

S. Chen*
Affiliation:
Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
G. Maero
Affiliation:
INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
M. Romé
Affiliation:
INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
*
Email address for correspondence: [email protected]

Abstract

The transverse dynamics of a pure electron plasma confined in a Penning–Malmberg trap is investigated, taking advantage of two-dimensional particle-in-cell numerical simulations. The evolution of the electron plasma turbulence is studied by means of a wavelet-based multiresolution analysis. In particular, a modified recursive denoising algorithm is developed to separate coherent and incoherent (not necessarily homogeneous) components of the flow. A set of simulations have been carried out changing systematically the radii of an initial annular density distribution of the electrons. The results of the multiresolution analysis indicate that the initial density configuration may have a considerable effect on the evolution of turbulence. Even very small initial density fluctuations can lead to quite different final states, especially in the presence of multiple active diocotron modes characterized by similar growth rates.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amoretti, M., Bettega, G., Cavaliere, F., Cavenago, M., De Luca, F., Pozzoli, R. & Romé, M. 2003 Cylindrical Penning trap for the study of electron plasmas. Rev. Sci. Instrum. 74 (9), 39913997.CrossRefGoogle Scholar
Amoretti, M., Durkin, D., Fajans, J., Pozzoli, R. & Romé, M. 2001 Asymmetric vortex merger: experiments and simulations. Phys. Plasmas 8, 38653868.CrossRefGoogle Scholar
Baroud, C. N., Plapp, B. B., She, Z. S. & Swinney, H. L. 2002 Anomalous self-similarity in a turbulent rapidly rotating fluid. Phys. Rev. Lett. 88, 114501.CrossRefGoogle Scholar
Benzi, R., Patarnello, S. & Santangelo, P. 1988 Self-similar coherent structures in two-dimensional decaying turbulence. J. Phys. A 21, 12211237.CrossRefGoogle Scholar
Bettega, G., Pozzoli, R. & Romé, M. 2009 Multiresolution analysis of the two-dimensional free decaying turbulence in a pure electron plasma. New J. Phys. 11, 053006.Google Scholar
van Bokhoven, L. J. A., Trieling, R. R., Clerckx, H. J. H. & van Heijst, G. J. F. 2007 Influence of initial conditions on decaying two-dimensional turbulence. Phys. Fluids 19, 046601.CrossRefGoogle Scholar
Borgogno, D., Califano, F., Faganello, M. & Pegoraro, F. 2015 Double-reconnected magnetic structures driven by Kelvin–Helmholtz vortices at the Earth’s magnetosphere. Phys. Plasmas 22, 032301.CrossRefGoogle Scholar
Carnevale, G. F., McWilliams, J. C., Pomeau, Y., Weiss, J. B. & Young, W. R. 1991 Evolution of vortex statistics in two-dimensional turbulence. Phys. Rev. Lett. 66, 27352737.CrossRefGoogle ScholarPubMed
Coppa, G. G. M., Peano, F. & Peinetti, F. 2002 Image-charge method for contour dynamics in systems with cylindrical boundaries. J. Comput. Phys. 182, 392417.CrossRefGoogle Scholar
Davidson, R. C. 1990 An Introduction to the Physics of Nonneutral Plasmas. Addison-Wesley.Google Scholar
Delzanno, G. L., Lapenta, G. & Finn, J. M. 2002 KANDINSKY: a PIC code for fluid simulations of Penning traps. IEEE Trans. Plasma Sci. 30, 3435.CrossRefGoogle Scholar
Driscoll, C. F. & Fine, K. S. 1990 Experiments on vortex dynamics in pure electron plasmas. Phys. Fluids B 2, 13591366.CrossRefGoogle Scholar
Driscoll, C. F., Jin, D. Z., Schecter, D. A., Moreau, E. J. & Dubin, D. H. E. 2000 Dynamics, statistics and vortex crystals in the relaxation of 2D turbulence. Phys. Scr. 84, 7680.CrossRefGoogle Scholar
Driscoll, C. F., Schecter, D. A., Jin, D. Z., Dubin, D. H. E., Fine, K. S. & Cass, A. C. 1999 Relaxation of 2D turbulence to vortex crystals. Physica A 263, 284292.CrossRefGoogle Scholar
Dritschel, D. G. & Waugh, D. W. 1992 Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids A 4, 17371744.CrossRefGoogle Scholar
Durkin, D. & Fajans, J. 2000 Experiments on two-dimensional vortex patterns. Phys. Fluids 12 (2), 289293.CrossRefGoogle Scholar
Farge, M. 1992 Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395457.CrossRefGoogle Scholar
Farge, M., Schneider, K. & Kevlahan, N. 1999 Non-gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis. Phys. Fluids 11 (8), 21872201.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Hockney, R. W. & Eastwood, J. W. 1981 Computer Simulation Using Particles. McGraw-Hill.Google Scholar
Huang, X.-P. & Driscoll, C. F. 1994 Relaxation of 2D turbulence to a metaequilibrium near the minimum enstrophy state. Phys. Rev. Lett. 72, 21872190.CrossRefGoogle ScholarPubMed
Jin, D. Z. & Dubin, D. H. E. 1998 Regional maximum entropy theory of vortex crystal formation. Phys. Rev. Lett. 80, 44344437.CrossRefGoogle Scholar
Jin, D. Z. & Dubin, D. H. E. 2000 Characteristics of two-dimensional turbulence that self-organizes into vortex crystals. Phys. Rev. Lett. 84, 14431446.CrossRefGoogle ScholarPubMed
Kalelkar, C. 2005 Structural studies of decaying fluid turbulence: effect of initial conditions. Phys. Rev. E 72, 056307.Google ScholarPubMed
Leith, C. E. 1968 Diffusion approximation for two-dimensional turbulence. Phys. Fluids 11, 671673.CrossRefGoogle Scholar
Leith, C. E. 1984 Minimum enstrophy vortices. Phys. Fluids 27, 13881395.CrossRefGoogle Scholar
Lepreti, F., Romé, M., Maero, G., Paroli, B., Pozzoli, R. & Carbone, V. 2013 Scaling properties and intermittency of two-dimensional turbulence in pure electron plasmas. Phys. Rev. E 87, 063110.Google ScholarPubMed
Levy, R. H. 1965 Diocotron instability in a cylindrical geometry. Phys. Fluids 8, 12881295.CrossRefGoogle Scholar
Maero, G., Romé, M., Lepreti, F. & Cavenago, M. 2014 Numerical study of a dust-contaminated electron plasma. Eur. Phys. J. D 68, 277.Google Scholar
Maggiore, M., Cavenago, M., Comunian, M., Chirulotto, F., Galatà, A., De Lazzari, M., Porcellato, A. M., Roncolato, C., Stark, S., Caruso, A., Longhitano, A., Cavaliere, F., Maero, G., Paroli, B., Pozzoli, R. & Romé, M. 2014 Plasma-beam traps and radiofrequency quadrupole beam coolers. Rev. Sci. Instrum. 85, 02B909.CrossRefGoogle ScholarPubMed
Mallat, S. G. 1999 A Wavelet Tour of Signal Processing. Academic.Google Scholar
Malmberg, J. H. & deGrassie, J. S. 1975 Properties of nonneutral plasma. Phys. Rev. Lett. 35, 577580.CrossRefGoogle Scholar
Matsumoto, M. & Nishimura, T. 1998 Mersenne Twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model. Comput. Simul. 8, 330.CrossRefGoogle Scholar
Melander, M. V., Zabusky, N. J. & McWilliams, J. C. 1988 Symmetric vortex merger in two dimensions: causes and conditions. J. Fluid Mech. 195, 303340.CrossRefGoogle Scholar
Miller, J. 1990 Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett. 65, 21372140.CrossRefGoogle ScholarPubMed
Miller, J., Weichman, P. B. & Cross, M. C. 1992 Statistical mechanics, Euler’s equation, and Jupiter’s Red Spot. Phys. Rev. A 45, 23282359.CrossRefGoogle ScholarPubMed
Morrison, P. J. 1984 Hamiltonian formulation of reduced magnetohydrodynamics. Phys. Fluids 27, 886897.CrossRefGoogle Scholar
Peurrung, A. J. & Fajans, J. 1993 Experimental dynamics of an annulus of vorticity in a pure electron plasma. Phys. Fluids A 5, 493499.CrossRefGoogle Scholar
Rivera, M., Vorobieff, P. & Ecke, R. E. 1998 Turbulence in flowing soap films: velocity, vorticity, and thickness fields. Phys. Rev. Lett. 81, 14171420.CrossRefGoogle Scholar
Robert, R. & Sommeria, J. 1991 Statistical equilibrium states for two-dimensional flows. J. Fluid Mech. 229, 291310.CrossRefGoogle Scholar
Rodgers, D. J., Servidio, S., Matthaeus, W. H., Montgomery, D. C., Mitchell, T. B. & Aziz, T. 2009 Hydrodynamic relaxation of an electron plasma to a near-maximum entropy state. Phys. Rev. Lett. 102, 244501.CrossRefGoogle ScholarPubMed
Romé, M., Brunetti, M., Califano, F., Pegoraro, F. & Pozzoli, R. 2000 Motion of extended vortices in an inhomogeneous pure electron plasma. Phys. Plasmas 7, 28562865.CrossRefGoogle Scholar
Romé, M., Cavaliere, F., Cavenago, M., Chen, S. & Maero, G.2015 Effects of dust contamination on the transverse dynamics of a magnetized electron plasma. In Non-Neutral Plasma Physics IX, AIP Conf. Proc. 1668, 030001.Google Scholar
Romé, M. & Lepreti, F. 2011 Turbulence and coherent structures in non-neutral plasmas. Eur. Phys. J. Plus 126, 38.CrossRefGoogle Scholar
Ruppert-Felsot, J., Farge, M. & Petitjeans, P. 2009 Wavelet tools to study intermittency: application to vortex bursting. J. Fluid Mech. 636, 427453.CrossRefGoogle Scholar
Rutgers, M. A. 1998 Forced 2D turbulence: experimental evidence of simultaneous inverse energy and forward enstrophy cascades. Phys. Rev. Lett. 81, 22442247.CrossRefGoogle Scholar
Santangelo, P., Benzi, R. & Legras, B. 1989 The generation of vortices in high resolution, two-dimensional decaying turbulence, and the influence of initial conditions on the breaking of self-similarity. Phys. Fluids A 1, 10271034.CrossRefGoogle Scholar
Schecter, D. A., Dubin, D. H. E., Fine, K. S. & Driscoll, C. F. 1999 Vortex crystals from 2D Euler flow: experiment and simulation. Phys. Fluids 11, 905914.CrossRefGoogle Scholar
Trieling, R. R., Velasco Fuentes, O. U. & van Heijst, G. J. F. 2005 Interaction of two unequal corotating vortices. Phys. Fluids 17, 087103.CrossRefGoogle Scholar
Waugh, D. W. 1992 The efficiency of symmetric vortex merger. Phys. Fluids A 4, 17451758.CrossRefGoogle Scholar
Weiss, J. B. & McWilliams, J. C. 1993 Temporal scaling behavior of decaying two-dimensional turbulence. Phys. Fluids A 5, 608621.CrossRefGoogle Scholar
Yatsuyanagi, Y., Kiwamoto, Y., Ebisuzaki, T., Hatori, T. & Kato, T. 2003 Simulations of diocotron instability using a special-purpose computer, MDGRAPE-2. Phys. Plasmas 10, 31883195.CrossRefGoogle Scholar
Yin, Z., Montgomery, D. C. & Clerckx, H. J. H. 2003 Alternative statistical mechanical descriptions of decaying two-dimensional turbulence in terms of patches and points. Phys. Fluids 15, 19371953.CrossRefGoogle Scholar