Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T05:46:04.889Z Has data issue: false hasContentIssue false

Effect of Hall current and resistivity on the stability of a gas–liquid system

Published online by Cambridge University Press:  13 March 2009

G. L. Kalra
Affiliation:
University of Delhi, India and The Flinders University of South Australia
S. N. Kathuria
Affiliation:
Weather Radar Unit, India Meteorological Department, New Delhi-3, India
R. J. Hosking
Affiliation:
School of Physical Sciences, The Flmders University of South Australia, Bedford Park, South Australia5042
G. G. Lister
Affiliation:
School of Physical Sciences, The Flmders University of South Australia, Bedford Park, South Australia5042

Abstract

The stability of a non-conducting, compressible fluid (gas) flowing across the surface of incompressible conducting fluid (liquid) is discussed. Finite resistivity and Hall current are included in the hydromagnetic equations, together with surface tension. Both subsonic and supersonic flows are treated and some new instabilities are found, together with modifications to real and oscillatory modes obtained in earlier treatments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Buti, B., Kalra, G. L. & Kathuria, S. N. 1970 Phys. Fluids (to be published).Google Scholar
Chandrasekean, S. 1961 Hyclrocfynamic and Hydromagnetic Stability, p. 481. Oxford, Clarondon Press.Google Scholar
Chang, I-Dee & Russell, P. E. 1965 Phys. Fluids 8, 1018.CrossRefGoogle Scholar
Daly, Bart J. 1967 Phys. Fluids 10, 297.CrossRefGoogle Scholar
D'angelo, N. & Goeler, S. V. 1966 Phys. Fluids 9, 309.CrossRefGoogle Scholar
Gerwin, R. A. 1968 a phys. Fluids 11, 1699.CrossRefGoogle Scholar
Gerwin, R. A. 1968 b Rev. Mod. Phys. 40, 652.CrossRefGoogle Scholar
Hosking, R. J. 1965 Phys. Rev. Letters 15, 344.CrossRefGoogle Scholar
Hosking, R. J. 1968 J. Plasma Phys. 2, 613.CrossRefGoogle Scholar
Jukes, J. D. 1963 J. Fluid Mech. 16, 177.CrossRefGoogle Scholar
Kalra, G. L. 1967 Can. J. Phys. 45, 1579.CrossRefGoogle Scholar
Kalra, G. L. & Talwar, S. P. 1967 Mon. Not. R. astr. Soc. 135, 891.CrossRefGoogle Scholar
Kalra, G. L. 1969 Can. J. Phys. 47, 831.CrossRefGoogle Scholar
Melcher, James R. 1966 Phys. Fluids 9, 1548.CrossRefGoogle Scholar
Rao, S. S., Kalra, G. L. & Talwar, S. P. 1968 J. Plasma Phys. 2, 181.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves, pp. 70et seq. New York: McGraw-Hill.Google Scholar
Talwar, S. P. 1965 Phys. Fluids 8, 1295.CrossRefGoogle Scholar
Talwar, S. P. & Kalea, G. L. 1966 a Annals d'Astrophys. 29, 507.Google Scholar
Talwar, S. P. & Kalra, G. L. 1967 a Nuclear Fusion 7, 17.CrossRefGoogle Scholar
Talwar, S. P. & Kalra, G. L. 1967 b J. Plasma Phys. 1, 145.CrossRefGoogle Scholar
Wentzell, R. A. & Blackwell, J. J. 1965 Can. J. Phys. 43, 645.CrossRefGoogle Scholar
Wtilson, A. J. & Chang, I-Dee. 1967 Phys. Fluids 10, 2285.CrossRefGoogle Scholar