Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T18:55:16.293Z Has data issue: false hasContentIssue false

Dynamics of correlation functions with Elsässer variables for inhomogeneous MHD turbulence

Published online by Cambridge University Press:  13 March 2009

E. Marsch
Affiliation:
Max-Planck-Institut für Aeronomie, D-3411 Katlenburg-Lindau, Postfach 20, Federal Republic of Germany
C.-Y. Tu
Affiliation:
Max-Planck-Institut für Aeronomie, D-3411 Katlenburg-Lindau, Postfach 20, Federal Republic of Germany

Abstract

On the basis of the ideal MHD equations expressed in terms of Elsässer variables, a new set of equations has been derived that governs the dynamics of the inhomogeneous background plasma and the superimposed incompressible fluctuations. From these equations the dynamic equation for the two-point and two-time correlation tensor has been obtained, and subsequently the equations of motion for the various spectral densities related to energy, cross-helicity and residual energy or the Alfvén ratio have been established. This set of equations offers a new possibility of discussing and perhaps better understanding the mostly incompressible fluctuations observed in the solar-wind plasma and of analysing their radial evolution into interplanetary space and their spectral development. The scope of the paper is limited to giving mainly formal developments of the equations. A detailed evaluation of the many terms in the light of interplanetary observations is intended for the future, but is not presented in this paper.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnes, A. 1979 Solar System Plasma Physics (ed. Kennel, C. F., Lanzerotti, L. J. & Parker, E. N.), p. 249, North-Holland.Google Scholar
Barnes, A. 1981 Proceedings of ‘Solar Wind Four’ (ed. Rosenbauer, H.), p. 326. MPAE-Report W-100–81–31.Google Scholar
Barnes, A. 1983 Solar-Terrestrial Physics (ed. Carovillano, R. L. & Forbes, J. M.), pp. 155193. Reidel.Google Scholar
Barnes, A. & Hollweg, J. V. 1974 J. Geophys. Res. 79, 2302.CrossRefGoogle Scholar
Bavassano, B., Dobrowolny, M., Mariani, F. & Ness, N. F. 1982 J. Geophys. Res. 87, 3617.Google Scholar
Belcher, J. W. & Davis, L. 1971 J. Geophys. Res. 76, 3534.CrossRefGoogle Scholar
Coleman, P. J. 1968 Astrophys. J. 153, 371.CrossRefGoogle Scholar
Denskat, K. U. & Neubauer, F. M. 1982 J. Geophys. Res. 87, 2215.CrossRefGoogle Scholar
Dobrowolny, M., Mangeney, A. & Veltri, P. 1980 a Phys. Rev. Lett. 45, 144.CrossRefGoogle Scholar
Dobrowolny, M., Mangeney, A. & Veltri, P. 1980 b Astron. Astrophys. 83, 26.Google Scholar
Elsässer, W. M. 1950 Phys. Rev. 79, 183.CrossRefGoogle Scholar
Grappin, R., Frisch, U., Léorat, L. & Pouquet, A. 1982 Astron. Astrophys. 105, 6.Google Scholar
Grappin, R., Mangeney, A. & Marsch, E. 1989 J. Geophys. Res., submitted.Google Scholar
Grappin, R., Pouquet, A. & Léorat, J. 1983 Astron. Astrophys. 126, 51.Google Scholar
Heinemann, M. & Olbert, S. 1980 J. Geophys. Res. 85, 1311.Google Scholar
Hinze, J. O. 1975 Turbulence. McGraw-Hill.Google Scholar
Hollweg, J. V. 1973 Astrophys. J. 181, 547.CrossRefGoogle Scholar
Hollweg, J. V. 1974 J. Geophys. Res. 79, 1539.Google Scholar
Hundhausen, A. J. 1977 Coronal Holes and High Speed Streams (ed. Zirker, J. B.), p. 223. Colorado Associated Press, Boulder.Google Scholar
Luttrell, A. H. & Richter, A. K. 1987 Proceedings of the Sixth International Solar Wind Conference (ed. Pizzo, V. J., Holzer, T. & Sime, D. G.), p. 335. NCAR Technical Note.Google Scholar
Marsch, E. & Mangeney, A. 1987 J. Geophys. Res. 92, 7363.Google Scholar
Marsch, E. & Tu, C. Y. 1989 J. Geophys. Res., submitted.Google Scholar
Matthaeus, W. H. & Goldstein, M. L. 1982 J. Geophys. Res. 87, 6011.Google Scholar
Matthaeus, W. H. & Goldstein, M. L. 1983 Proceedings of ‘Solar Wind Five’ (ed. Neugebauer, M.), p. 73. NASA CP-2280.Google Scholar
Matthaeus, W. H., Goldstein, M. L. & King, J. H. 1986 J. Geophys. Res. 91, 59.Google Scholar
Matthaeus, W. H. & Montgomery, D. C. 1980 Ann. NY Acad. Sci. 357, 203.CrossRefGoogle Scholar
Montgomery, D. C. 1983 Proceedings of ‘Solar Wind Five’ (ed. Neugebauer, M.), p. 107. NASA CP-2280.Google Scholar
Roberts, D. A. & Goldstein, M. L. 1988 Proceedings of the Third International Conference on Supercomputing, ICS 88 (ed. Kartashev, L. P. & Kartashev, S. I.), vol. I, p. 370. International Supercomputing Institute, Inc.Google Scholar
Roberts, D. A., Goldstein, M. L., Klein, L. W. & Matthaeus, W. H. 1987 a J. Geophys. Res. 92, 12023.Google Scholar
Roberts, D. A., Klein, L. W., Goldstein, M. L. & Matthaeus, W. H. 1987 b J. Geophys. Res. 92, 11021.Google Scholar
Tu, G. Y. 1988 J. Geophys. Res. 93, 7.CrossRefGoogle Scholar
Tu, C. Y., Marsch, E. & Thieme, K. M. 1989 J. Geophys. Res. (In press.)Google Scholar
Vellante, U. & Lazarus, A. 1987 J. Geophys. Res. 92, 9893.Google Scholar
Veltri, P., Mangeney, A. & Dobrowolny, M. 1982 Nuovo Cim. 68B, 235.CrossRefGoogle Scholar
Whang, Y. C. 1973 J. Geophys. Res 78, 7221.CrossRefGoogle Scholar
Woltjer, L. 1958 Proc. Natl Acad. Sci. USA 44, 833.CrossRefGoogle Scholar