Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T04:37:21.315Z Has data issue: false hasContentIssue false

Development of tearing instability in a current sheet forming by sheared incompressible flow

Published online by Cambridge University Press:  21 February 2018

Elizabeth A. Tolman*
Affiliation:
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Nuno F. Loureiro
Affiliation:
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Dmitri A. Uzdensky
Affiliation:
Center for Integrated Plasma Studies, University of Colorado, Boulder, CO 80309, USA Institute for Advanced Study, Princeton, NJ 08540, USA
*
Email address for correspondence: [email protected]

Abstract

Sweet–Parker current sheets in high Lundquist number plasmas are unstable to tearing, suggesting they will not form in physical systems. Understanding magnetic reconnection thus requires study of the stability of a current sheet as it forms. Formation can occur due to sheared, sub-Alfvénic incompressible flows which narrow the sheet. Standard tearing theory (Furth et al. Phys. Fluids, vol. 6 (4), 1963, pp. 459–484, Rutherford, Phys. Fluids, vol. 16 (11), 1973, pp. 1903–1908, Coppi et al. Fizika Plazmy, vol. 2, 1976, pp. 961–966) is not immediately applicable to such forming sheets for two reasons: first, because the flow introduces terms not present in the standard calculation; second, because the changing equilibrium introduces time dependence to terms which are constant in the standard calculation, complicating the formulation of an eigenvalue problem. This paper adapts standard tearing mode analysis to confront these challenges. In an initial phase when any perturbations are primarily governed by ideal magnetohydrodynamics, a coordinate transformation reveals that the flow compresses and stretches perturbations. A multiple scale formulation describes how linear tearing mode theory (Furth et al. Phys. Fluids, vol. 6 (4), 1963, pp. 459–484, Coppi et al. Fizika Plazmy, vol. 2, 1976, pp. 961–966) can be applied to an equilibrium changing under flow, showing that the flow affects the separable exponential growth only implicitly, by making the standard scalings time dependent. In the nonlinear Rutherford stage, the coordinate transformation shows that standard theory can be adapted by adding to the stationary rates time dependence and an additional term due to the strengthening equilibrium magnetic field. Overall, this understanding supports the use of flow-free scalings with slight modifications to study tearing in a forming sheet.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W. & McPherron, R. L. 1996 Neutral line model of substorms: past results and present view. J. Geophys. Res. 101 (A6), 1297513010.CrossRefGoogle Scholar
Bender, C. M. & Orszag, S. M. 2013 Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer Science & Business Media.Google Scholar
Bhattacharjee, A., Huang, Y. M., Yang, H. & Rogers, B. 2009 Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16 (11), 112102.CrossRefGoogle Scholar
Biskamp, D. 1986 Magnetic reconnection via current sheets. Phys. Fluids 29 (5), 15201531.CrossRefGoogle Scholar
Biskamp, D. 2005 Magnetic Reconnection in Plasmas. Cambridge University Press.Google Scholar
Bulanov, S. V. 2016 Magnetic reconnection: from MHD to QED. Plasma Phys. Control. Fusion 59 (1), 014029.Google Scholar
Bulanov, S. V., Syrovatskii, S. I. & Sakai, J. 1978 Stabilizing influence of plasma flow on dissipative tearing instability. ZhETF Pisma Redaktsiiu 28, 193195.Google Scholar
Chapman, S. & Kendall, P. C. 1963 Liquid instability and energy transformation near a magnetic neutral line: a soluble non-linear hydromagnetic problem. Proc. R. Soc. Lond. A 271, 435448.Google Scholar
Chen, X. L. & Morrison, P. J. 1990 Resistive tearing instability with equilibrium shear flow. Phys. Fluids B 2 (3), 495507.CrossRefGoogle Scholar
Comisso, L., Lingam, M., Huang, Y. & Bhattacharjee, A. 2017 Plasmoid instability in forming current sheets. Astrophys. J. 850 (2), 142.CrossRefGoogle Scholar
Comisso, L., Lingam, M., Huang, Y. M. & Bhattacharjee, A. 2016 General theory of the plasmoid instability. Phys. Plasmas 23 (10), 100702.CrossRefGoogle Scholar
Coppi, B., Galvão, R., Pellat, R., Rosenbluth, M. & Rutherford, P. 1976 Resistive internal kink modes. Fizika Plazmy 2, 961966.Google Scholar
Friedel, H., Grauer, R. & Marliani, C. 1997 Adaptive mesh refinement for singular current sheets in incompressible magnetohydrodynamic flows. J. Comput. Phys. 134 (1), 190198.CrossRefGoogle Scholar
Furth, H. P., Killeen, J. & Rosenbluth, M. N. 1963 Finite-resistivity instabilities of a sheet pinch. Phys. Fluids 6 (4), 459484.CrossRefGoogle Scholar
Goedbloed, J. P. & Poedts, S. 2004 Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press.CrossRefGoogle Scholar
Harris, E. G. 1962 On a plasma sheath separating regions of oppositely directed magnetic field. Il Nuovo Cimento 23 (1), 115121.CrossRefGoogle Scholar
Hender, T. C., Wesley, J. C., Bialek, J., Bondeson, A., Boozer, A. H., Buttery, R. J., Garofalo, A., Goodman, T. P., Granetz, R. S., Gribov, Y. et al. 2007 MHD stability, operational limits and disruptions. Nucl. Fusion 47 (6), S128.CrossRefGoogle Scholar
Huang, Y., Comisso, L. & Bhattacharjee, A. 2017 Plasmoid instability in evolving current sheets and onset of fast reconnection. Astrophys. J. 849 (2), 75.CrossRefGoogle Scholar
Ji, H. & Daughton, W. 2011 Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas. Phys. Plasmas 18 (11), 111207.CrossRefGoogle Scholar
Kadomtsev, B. B. & Pogutse, O. P. 1973 Nonlinear helical perturbations of a plasma in the tokamak. J. Exper. Theoret. Phys. 65 (5), 575589.Google Scholar
Lembege, B. & Pellat, R. 1982 Stability of a thick two-dimensional quasineutral sheet. Phys. Fluids 25 (11), 19952004.CrossRefGoogle Scholar
Loureiro, N. F., Cowley, S. C., Dorland, W. D., Haines, M. G. & Schekochihin, A. A. 2005 X-point collapse and saturation in the nonlinear tearing mode reconnection. Phys. Rev. Lett. 95 (23), 235003.CrossRefGoogle ScholarPubMed
Loureiro, N. F., Schekochihin, A. A. & Cowley, S. C. 2007 Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14 (10), 100703.CrossRefGoogle Scholar
Loureiro, N. F., Schekochihin, A. A. & Uzdensky, D. A. 2013 Plasmoid and Kelvin–Helmholtz instabilities in Sweet–Parker current sheets. Phys. Rev. E 87 (1), 013102.Google ScholarPubMed
Loureiro, N. F. & Uzdensky, D. A. 2015 Magnetic reconnection: from the Sweet–Parker model to stochastic plasmoid chains. Plasma Phys. Control. Fusion 58 (1), 014021.Google Scholar
Low, B. C. & Wolfson, R. 1988 Spontaneous formation of electric current sheets and the origin of solar flares. Astrophys. J. 324, 574581.CrossRefGoogle Scholar
Masuda, S., Kosugi, T., Hara, H., Tsuneta, S. & Ogawara, Y. 1994 A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495.CrossRefGoogle Scholar
Paris, R. B. & Sy, W. N.-C. 1983 Influence of equilibrium shear flow along the magnetic field on the resistive tearing instability. Phys. Fluids 26 (10), 29662975.CrossRefGoogle Scholar
Parker, E. N. 1957 Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62 (4), 509520.CrossRefGoogle Scholar
Petrukovich, A., Artemyev, A., Vasko, I., Nakamura, R. & Zelenyi, L. 2015 Current sheets in the Earth magnetotail: plasma and magnetic field structure with Cluster project observations. Space Sci. Rev. 188 (1–4), 311337.CrossRefGoogle Scholar
Pucci, F. & Velli, M. 2014 Reconnection of quasi-singular current sheets: the ‘ideal’ tearing mode. Astrophys. J. Lett. 780 (2), L19.CrossRefGoogle Scholar
Rutherford, P. H. 1973 Nonlinear growth of the tearing mode. Phys. Fluids 16 (11), 19031908.CrossRefGoogle Scholar
Samtaney, R., Loureiro, N. F., Uzdensky, D. A., Schekochihin, A. A. & Cowley, S. C. 2009 Formation of plasmoid chains in magnetic reconnection. Phys. Rev. Lett. 103 (10), 105004.CrossRefGoogle ScholarPubMed
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Quataert, E. & Tatsuno, T. 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. Ser. 182 (1), 310.CrossRefGoogle Scholar
Sitnov, M. & Swisdak, M. 2011 Onset of collisionless magnetic reconnection in two-dimensional current sheets and formation of dipolarization fronts. J. Geophys. Res. 116 (A12).CrossRefGoogle Scholar
Strauss, H. R. 1976 Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks. Phys. Fluids 19 (1), 134140.CrossRefGoogle Scholar
Sulem, P. L., Frisch, U., Pouquet, A. & Meneguzzi, M. 1985 On the exponential flattening of current sheets near neutral X-points in two-dimensional ideal MHD flow. J. Plasma Phys. 33 (2), 191198.CrossRefGoogle Scholar
Sweet, P. 1958 The neutral point theory of solar flares. In Electromagnetic Phenomena in Cosmical Physics (ed. Lehnert, B.), p. 123. Cambridge University Press.Google Scholar
Uzdensky, D. A. 2004 Magnetic interaction between stars and accretion disks. Astrophys. Space Sci. 292 (1), 573585.CrossRefGoogle Scholar
Uzdensky, D. A. & Loureiro, N. F. 2016 Magnetic reconnection onset via disruption of a forming current sheet by the tearing instability. Phys. Rev. Lett. 116 (10), 105003.CrossRefGoogle ScholarPubMed
Vekstein, G. & Kusano, K. 2015 Nonlinear regimes of forced magnetic reconnection. Phys. Plasmas 22 (9), 090707.CrossRefGoogle Scholar
Waelbroeck, F. L. 1993 Onset of the sawtooth crash. Phys. Rev. Lett. 70 (21), 3259.CrossRefGoogle ScholarPubMed
Yamada, M., Kulsrud, R. & Ji, H. 2010 Magnetic reconnection. Rev. Mod. Phys. 82 (1), 603.CrossRefGoogle Scholar
Zweibel, E. G. & Yamada, M. 2009 Magnetic reconnection in astrophysical and laboratory plasmas. Annu. Rev. Astron. Astrophys. 47, 291332.CrossRefGoogle Scholar