Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-02T19:19:24.576Z Has data issue: false hasContentIssue false

A comparative study between effects of shadowing potential and ODS on Coulomb crystal formation

Published online by Cambridge University Press:  23 December 2010

SWATI BARUAH
Affiliation:
Department of Physics, Tezpur University, Tezpur-784 028, Assam, India ([email protected])
NILAKSHI DAS
Affiliation:
Department of Physics, Tezpur University, Tezpur-784 028, Assam, India ([email protected])

Abstract

In dusty plasma, the overlapping Debye spheres around dust grains produce an attractive force. Shadowing force is exerted between neighboring particles because of mutual distortion of ion or neutral flux to the particles. A comparative study has been made on the role of these two forces on 2D structure of dusty system. Radial distribution function for the particles is a comparative study between the effect of the coupled Yukawa-shadowing potential and the coupled Yukawa-Overlapping Debye Sphere (ODS) potential on 2D dust crystal formation, which has been performed by using molecular dynamics simulation. The structure of the system is investigated by calculating the radial distribution function (g(r)) for different values of Γ, κ and dust number densities nd. It is seen from our study that the Coulomb coupling parameter does not have significant effect on both ODS and shadowing forces. The attractive shadowing force is more dominant for grains with large screening parameter. However, the ODS force becomes dominant with the increasing value of the dust number density. The results for the Yukawa-Shadowing and the ODS potential are also compared with experimental results and a close agreement is obtained for attractive shadowing force.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ikezi, H. 1986 Phys. Fluids 29, 1764.CrossRefGoogle Scholar
[2]Chu, J. H. and Lin, I. 1994 Phys. Rev. Lett. 72, 4009.CrossRefGoogle Scholar
[3]Thomas, H., Morfill, G. E., Demmel, V., Goree, J., Feuerbacher, B. and Möhlmann, D. 1994 Phys. Rev. Lett. 73, 652.CrossRefGoogle Scholar
[4]Hayashi, Y. and Tachibana, K. 1994 Jpn. J. Appl. Phys. 33, L804.CrossRefGoogle Scholar
[5]Melzer, A., Trottenberg, T. and Piel, A. 1994 Phys. Lett. A 191, 301.CrossRefGoogle Scholar
[6]Sato, N., Uchida, G., Ozaki, R. and Lizuka, S. 1997 In: Physics of Dusty Plasmas (eds. Horanyi, M., Robertson, S. and Watch, B.). New York: American Institute of Physics, p. 3113.Google Scholar
[7]Hamaguchi, S., Farouki, R. T. and Dubin, D. H. E. 1997 Phys. Rev. E 56, 4671.CrossRefGoogle Scholar
[8]Totsuji, H., Kishimoto, T., Inoue, Y., Totsuji, C. and Nara, S. 1996 Phys. Lett. A 221, 215.CrossRefGoogle Scholar
[9]Takahashi, K., Oishi, T., Shimomami, K., Hayashi, Y. and Nishino, S. 1998 Phys. Rev. E 58, 7805.CrossRefGoogle Scholar
[10]Melzer, A., Schweigert, V. A. and Piel, A. 1999 Phys. Rev. Lett. 83, 3194.CrossRefGoogle Scholar
[11]Konopka, U., Morfill, G. E. and Ratke, L. 2000 Phys. Rev. Lett. 84, 891.CrossRefGoogle Scholar
[12]Tsytovich, V. N., Khodataev, Y. K. and Bingham, R. 1996 Commun. Plasma Phys. Control. Fusion 17, 249.Google Scholar
[13]Ramazanov, T. S., Dzhumagulova, K. N., Daniyarov, T. T., Omarbakiyeva, Yu. A., Kodanova, S. K. and Dosbolayev, M. K. 2010 J. Plasma Physics 76, 57.CrossRefGoogle Scholar
[14]Nambu, M., Vladimirov, S. V. and Shukla, P. K. 1995 Phys. Lett. A 203, 40.CrossRefGoogle Scholar
[15]Nambu, M. and Akama, H. 1985 Phys. Fluids 28, 2300.CrossRefGoogle Scholar
[16]Vladimirov, S. V. and Nambu, M. 1995 Phys. Rev. E 52, R2172.CrossRefGoogle Scholar
[17]Takahashi, K., Oishi, T., Shimomai, K., Hayashi, Y. and Nishino, S. 1998 Phys. Rev. E 58, 7805.CrossRefGoogle Scholar
[18]Shukla, P. K. and Rao, N. N. 1996 Phys. Plasmas 3, 1770.CrossRefGoogle Scholar
[19]Resendes, D. P., Mendonca, J. T. and Shukla, P. K. 1998 Phys. Lett. A 239, 181.CrossRefGoogle Scholar
[20]Tsytovich, V. N. 2005 JETP Lett. 81, 448.CrossRefGoogle Scholar
[21]Ishihara, O. and Sato, N. 2005 Phys. Plasmas 12, 070705.CrossRefGoogle Scholar
[22]Tsytovich, V. N., Morfill, G. E., Fortov, V. E., Gusein-Zade, N. G., Klumov, B. A. and Vladimirov, S. V. 2007 New J. Phys. 9, 263.CrossRefGoogle Scholar
[23]Hou, L. J., Shukla, P. K. and Piel, A. 2009 Phys. Lett. A 373, 458.CrossRefGoogle Scholar
[24]Melzer, A., Schweigert, V. A. and Piel, A. 1999 Phys. Rev. Lett. 83, 3194.CrossRefGoogle Scholar
[25]Hou, L. J., Shukla, P. K. and Piel, A. 2009 Phys. Lett. A 373, 458.CrossRefGoogle Scholar
[26]Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 81, 25.CrossRefGoogle Scholar