Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T06:53:08.740Z Has data issue: false hasContentIssue false

Clustering of ions at atomic dimensions in quantum plasmas

Published online by Cambridge University Press:  20 December 2012

PADMA K. SHUKLA
Affiliation:
International Centre for Advanced Studies in Physical Sciences & Institute for Theoretical Physics, Faculty of Physics & Astronomy, Ruhr-University Bochum, D-44780 Bochum, Germany ([email protected]) Department of Mechanical and Aerospace Engineering & Center for Energy Research, University of California San Diego, La Jolla, CA 92093, USA
BENGT ELIASSON
Affiliation:
International Centre for Advanced Studies in Physical Sciences & Institute for Theoretical Physics, Faculty of Physics & Astronomy, Ruhr-University Bochum, D-44780 Bochum, Germany ([email protected])

Abstract

By means of particle simulations of the equations of motion for ions interacting among themselves under the influence of newly discovered Shukla–Eliasson attractive force (SEAF) in a dense quantum plasma, we demonstrate that the SEAF can bring ions closer at atomic dimensions. We present simulation results of the dynamics of an ensemble of ions in the presence of the SEAF without and with confining external potentials and collisions between ions and degenerate electrons. Our particle simulations reveal that under the SEAF, ions attract each other, come closer, and form ionic clusters in the bath of degenerate electrons that shield ions. Furthermore, an external confining potential produces robust ion clusters that can have cigar- and ball-like shapes, which remain stable when the confining potential is removed. The stability of ion clusters is discussed. Our results may have applications to solid density plasmas (density exceeding 1023 per cm3), where the electrons will be degenerate and quantum forces due to the electron recoil effect caused by the overlapping of electron wave functions and electron tunneling through the Bohm potential, electron-exchange and electron-exchange and electron correlations associated with electron-1/2 spin effect, and the quantum statistical pressure of the degenerate electrons play a decisive role.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbari-Moghanjoughi, M. 2012 Shukla-Eliasson attractive force: revisited. J. Plasma Phys. pp. 18. doi:10.1017/S0022377812000839, Published online: 30 October 2012.CrossRefGoogle Scholar
Avinash, K. 2007 Mean-field theory of critical phenomenon for mutually repelling particles in complex plasmas. Phys. Rev. Lett. 98, 095003.CrossRefGoogle ScholarPubMed
Barkan, A. and Merlino, R. L. 1995 Confinement of dust particles in a double layer. Phys. Plasmas 2, 32613265.CrossRefGoogle Scholar
Berg, T. G. O. and Gaukler, T. A. 1969 Apparatus for the study of charged particles and droplets. Am. J. Phys. 37, 10131018.CrossRefGoogle Scholar
Bohm, D. 1952 A suggested interpretation of the quantum theory in terms of “hidden" variables. I. Phys. Rev. 85, 166179.CrossRefGoogle Scholar
Bohm, D. and Pines, D. 1953 A collective description of electron interactions: III. Coulomb interactions in a degenerate electron Gas. Phys. Rev. 92, 609625.CrossRefGoogle Scholar
Brey, L., Dempsey, J., Johnson, N. F. and Halperin, B. I. 1990 Infrared optical absorption in imperfect parabolic quantum wells. Phys. Rev. B 42, 12401247.CrossRefGoogle ScholarPubMed
Brodin, G., Marklund, M. and Manfredi, G. 2008 Quantum plasma effects in the classical regime. Phys. Rev. Lett. 100, 175001.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. 1931 The maximum mass of ideal white dwarfs. Astrophys. J. 74, 8182.CrossRefGoogle Scholar
Chandrasekhar, S. 1939 An Introduction to the Study of Stellar Structure. Chicago, IL: The University of Chicago Press.Google Scholar
Chu, J. H. and I, L. 1994 Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas. Phys. Rev. Lett. 72, 40094012.CrossRefGoogle ScholarPubMed
Crandall, R. S. and Williams, R. 1971 Crystallization of electrons on the surface of liquid helium. Phys. Lett. A 34, 404405.CrossRefGoogle Scholar
Crouseilles, N., Hervieux, P. A. and Manfredi, G. 2008 Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films. Phys. Rev. B 78, 155412.CrossRefGoogle Scholar
Debye, P. and Hückel, E. 1923 Zur Theorie der Electrolyte I: Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys. Z. 24, 185206.Google Scholar
Deshpande, V. V. and Bockrath, M. 2008 The one-dimensional Wigner crystal in carbon nanotubes. Nature Phys. 4, 314318.CrossRefGoogle Scholar
Drewsen, M., Brodersen, C., Hornekær, L., Hangst, J. S. and Schiffer, J. P. 1998 Large ion crystals in a linear Paul trap. Phys. Rev. Lett. 81, 28782881.CrossRefGoogle Scholar
Fermi, E. 1927 Un metodo statistico per la determinazione di alcune proprietà dell'atomo. Rend. Acad. Na. Lincei 6, 602607.Google Scholar
Fortov, V. E. 2009 Extreme state of matter on earth and in space. Phys. Usp. 52, 615647.CrossRefGoogle Scholar
Fortov, V. E., Nefedov, A. P., Torchinsky, V. M., Molotkov, V. I., Petrov, O. F., Samarian, A. A., Lipaev, A. A. and Khrapak, A. G. 1997 Crystalline structure of strongly coupled dusty plasmas in dc glow discharge strata. Phys. Lett. A 229, 317322.CrossRefGoogle Scholar
Gardner, C. L. and Ringhofer, C. 1996 Smooth quantum potential for the hydrodynamic model. Phys. Rev. E 53, 157167.Google ScholarPubMed
Glenzer, S. H., Landen, O. L., Neumayer, P., Lee, R. W., Widmann, K., Pollaine, S. W., Wallace, R. J., Gregori, G., Holl, A., Bornath, T.et al. 2007 Observations of plasmons in warm dense matter. Phys. Rev. Lett. 98, 065002.CrossRefGoogle ScholarPubMed
Glenzer, S. H. and Redmer, R. 2009 X-ray Thomson scattering in high energy density plasmas. Rev. Mod. Phys. 81, 16251663.CrossRefGoogle Scholar
Grimes, C. C. and Adams, G. 1979 Evidence for a liquid-to-crystal phase transition in a classical, two-dimensional sheet of electrons. Phys. Rev. Lett. 42, 795798.CrossRefGoogle Scholar
Haas, F. 2011 Quantum Plasmas: An Hydrodynamical Approach. New York: Springer.CrossRefGoogle Scholar
Hayashi, Y. and Tachibana, K. 1994 Observation of Coulomb-crystal formation from carbon particles grown in a methane plasma. Jpn. J. Appl. Phys. 33, L804L806.CrossRefGoogle Scholar
Hedin, L. and Lundqvist, B. I. 1971 Explicit local exchange-correlation potentials. J. Phys. C: Solid State Phys. 4, 20642083.CrossRefGoogle Scholar
Klimontovich, Yu. L. and Silin, V. P. 1952a Dokl. Akad. Nauk SSSR, 82, 361.Google Scholar
Klimontovich, Yu. L. and Silin, V. P. 1952b Concerning the spectra of systems of interacting particles. Zh. Eksp. Teor. Fiz. 23, 151160.Google Scholar
Klumov, B. 2010 On melting criteria for complex plasma. Phys. Usp. 53, 10531065.CrossRefGoogle Scholar
Kremer, K., Robbins, M. O. and Grest, G. S. 1986 Phase diagram of Yukawa systems: model for charge-stabilized colloids. Phys. Rev. Lett. 57, 26942697.CrossRefGoogle ScholarPubMed
Landau, L. D. and Lifshitz, E. M. 1980 Statistical Physics. Oxford, UK: Butterworth-Heinemann.Google Scholar
Langmuir, I. 1929 The interaction of electron and positive ion space charges in cathode sheaths. Phys. Rev. 33, 954989.CrossRefGoogle Scholar
Malkin, V. M., Fisch, N. J. and Wurtele, J. S. 2007 Compression of powerful x-ray pulses to attosecond durations by stimulated Raman backscattering in plasmas. Phys. Rev. E 75, 026404.Google ScholarPubMed
Manfredi, G. 2005 How to model quantum plasmas. Fields Inst. Commun. 46, 263287.Google Scholar
Manfredi, G. and Haas, F. 2001 Self-consistent fluid model for a quantum electron gas. Phys. Rev. B 64, 075316.CrossRefGoogle Scholar
Melrose, D. B. 2008 Quantum Plasmadynamics: Unmagnetized Plasmas. Berlin, Germany: Springer.CrossRefGoogle Scholar
Mendonça, J. T. 2011 Wave kinetics of relativistic quantum plasmas. Phys. Plasmas 18, 062101.CrossRefGoogle Scholar
Mohideen, U., Rahman, H. U., Smith, M. A., Rosenberg, M. and Mendis, D. A. 1998 Intergrain coupling in dusty-plasma Coulomb crystals. Phys. Rev. Lett. 81, 349352.CrossRefGoogle Scholar
Mølhave, K. and Drewsen, M. 2000 Formation of translationally cold MgH+ and MgD+ molecules in an ion trap. Phys. Rev. A 62, 011401.CrossRefGoogle Scholar
Nambu, M., Vladimirov, S. V. and Shukla, P. K. 1995 Attractive forces between charged particulates in plasmas. Phys. Lett. A 203, 4042.CrossRefGoogle Scholar
Resendes, D. F., Mendonça, J. T. and Shukla, P. K. 1998 Formation of dusty plasma molecules. Phys. Lett. A 239, 181186.CrossRefGoogle Scholar
Robertson, S. and Younger, R. 1999 Coulomb crystals of oil droplets. Am. J. Phys. 67, 310315.CrossRefGoogle Scholar
Salpeter, E. E. 1961 Energy and pressure of a zero-temperature plasma. Astrophys. J. 134, 669682.CrossRefGoogle Scholar
Shaikh, D. and Shukla, P. K. 2007 Fluid turbulence in quantum plasmas. Phys. Rev. Lett. 99, 125002.CrossRefGoogle ScholarPubMed
Shukla, P. K., Akbari-Moghanjoughi, M. and Eliasson, B. 2012 Comment on “On ‘Novel attractive forces’ between ions in quantum plasmas – failure of linearized quantum hydrodynamics.” arXiv:1206.3456 [physics.plasm-ph].CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2006 Formation and dynamics of dark solitons and vortices in quantum electron plasmas. Phys. Rev. Lett. 96, 245001.CrossRefGoogle ScholarPubMed
Shukla, P. K. and Eliasson, B. 2007 Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas Phys. Rev. Lett. 99, 096401.CrossRefGoogle ScholarPubMed
Shukla, P. K. and Eliasson, B. 2009 Fundamentals of dust plasma interactions. Rev. Mod. Phys. 81, 2550.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2010 Nonlinear aspects of quantum plasma physics. Phys. Usp. 53, 5176.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2011 Nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83, 885906.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2012a Novel attractive force between ions in quantum Plasmas. Phys. Rev. Lett. 108, 165007.CrossRefGoogle ScholarPubMed
Shukla, P. K. and Eliasson, B. 2012b Erratum: novel attractive force between ions in quantum plasmas. Phys. Rev. Lett. 108, 165007 (2012)]; Phys. Rev. Lett. 108, 219902(E).CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2012c Erratum: novel attractive force between ions in quantum plasmas. Phys. Rev. Lett. 108, 165007; Phys. Rev. Lett. 109, 019901(E).CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
Shukla, P. K. and Rao, N. N. 1996 Coulomb crystallization in colloidal plasmas with streaming ions and dust grains. Phys. Plasmas 3, 17701772.CrossRefGoogle Scholar
Son, S. and Fisch, N. J. 2004 Aneutronic fusion in a degenerate plasma. Phys. Lett. A 329, 7682.CrossRefGoogle Scholar
Son, S. and Fisch, N. J. 2005 Current-drive efficiency in a degenerate plasma. Phys. Rev. Lett. 95, 225002.CrossRefGoogle Scholar
Son, S. and Fisch, N. J. 2006 Controlled fusion with hot-ion mode in a degenerate plasma. Phys. Lett. A 356, 6571.CrossRefGoogle Scholar
Staanum, P. F., Højbjerre, K., Skyt, P. S., Hansen, A. K. and Drewsen, M. 2010 Rotational laser cooling of vibrationally and translationally cold molecular ions. Nature Phys. 6, 271274.CrossRefGoogle Scholar
Tan, J. N., Bollinger, J. J., Jelenkovic, B. and Wineland, D. J. 1995 Long-range order in laser-cooled, atomic-ion Wigner crystals observed by Bragg scattering. Phys. Rev. Lett. 75, 41984201.CrossRefGoogle ScholarPubMed
Thomas, L. H. 1927 The calculation of atomic fields. Math. Proc. Cambridge Phil. Soc. 23, 542548.CrossRefGoogle Scholar
Thomas, H., Morfill, G. E., Demmel, V., Goree, J., Feuerbacher, B. and Möhlmann, D. 1994 Plasma crystal: Coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73, 652655.CrossRefGoogle Scholar
Tsintsadze, N. L. and Tsintsadze, L. N. 2009 Novel quantum kinetic equations of the Fermi particles. Europhys. Lett. 88, 35001.CrossRefGoogle Scholar
Vladimirov, S. V. and Nambu, M. 1995 Attraction of charged particulates in plasmas with finite flows. Phys. Rev. E 52, R2172R2174.Google ScholarPubMed
Vladimirov, S. V. and Tyshetskiy, Yu. O. 2011 On description of a collisionless quantum plasma. Phys. Usp. 54, 12431256.CrossRefGoogle Scholar
Watanabe, H. 1956 Experimental evidence for the collective nature of the characteristic energy loss of electrons in solids-Studies on the dispersion relation of plasma frequency. J. Phys. Soc. Jpn. 11, 112119.CrossRefGoogle Scholar
Wigner, E. 1934 On the interaction of electrons in metals. Phys. Rev. 46, 10021011.CrossRefGoogle Scholar
Wilhelm, H. E. 1971 Wave-mechanical formulation of plasma dynamics in longitudinal electric fields. Z. Phys. 241, 18.CrossRefGoogle Scholar
Winter, H. and Ortjohann, H. W. 1991 Simple demonstration of storing macroscopic particles in a “Paul trap.'' Am. J. Phys. 59, 807813.CrossRefGoogle Scholar
Wuerker, R. F., Shelton, H. and Langmuir, R. V. 1959 Electrodynamic containment of charged particles. J. Appl. Phys. 30, 342349.CrossRefGoogle Scholar
Yukawa, H. 1935 On the interaction of elementary particles I. Proc. Phys. Math. Jpn. 17, 4857.Google Scholar