Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T18:52:51.907Z Has data issue: false hasContentIssue false

Cairns-Gurevich equation for soliton in plasma expansion into vacuum

Published online by Cambridge University Press:  05 March 2015

K. Annou*
Affiliation:
Centre de développement des technologies avancées, BP 17, Baba Hassen 16303, Algiers, Algeria
D. Bara
Affiliation:
Centre de développement des technologies avancées, BP 17, Baba Hassen 16303, Algiers, Algeria
D. Bennaceur-Doumaz
Affiliation:
Centre de développement des technologies avancées, BP 17, Baba Hassen 16303, Algiers, Algeria
*
Email address for correspondence: [email protected]

Abstract

Plasma expansion and soliton formation in laser created plasma are addressed. Nonlinear acoustic waves in plasma where the combined effect of trapped and non-thermal electrons are dealt with, in plasma expansion are studied. Using the perturbation method, a modified Korteweg–de Vries equation (mKdV) that describes how the ion acoustic waves (IAW) are derived. The plasma is modeled by a Cairns distribution function for non-thermal electrons combined with Gurevich distribution function for the trapped electrons. It is found that parameters taken into account have significant effects on the properties of nonlinear waves as well as on plasma expansion into vacuum. We point out, that this work has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, combined with trapped particles. Furthermore, this study is of interest in the context of the investigation of mono-energetic ion beams from intense laser interactions with plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annou, K. and Annou, R. 2012a Pramana – J. Phys. 78, 121126.CrossRefGoogle Scholar
Annou, K. and Annou, R. 2012b Phys. Plasmas 19, 043705.CrossRefGoogle Scholar
Antonova, E. E., Ermakova, N. O., Stepanova, M. V. and Teltzov, M. V. 2003 Adv. Space Res. 31, 1229.CrossRefGoogle Scholar
Bara, D., Djebli, M. and Bennacer-Doumaz, D. 2014 Laser and Part. Beams 32, 391.CrossRefGoogle Scholar
Bennaceur-Doumaz, D., Bara, D. and Djebli, M. 2011 Adv. Mater. Res. 227, 53.CrossRefGoogle Scholar
Cairns, R. A., Mamum, A. A., Bingham, R., Boström, R., Dendy, R. O., Nairn, C. M. and Shukla, P. K. 1995 Geophys. Res. Lett. 22, 2709.CrossRefGoogle Scholar
Goldman, M. V., Newman, D. L. and Ergun, R. E. 1979 Nonliear Proc. Geophys. 10, 37.CrossRefGoogle Scholar
Gurevich, A. V. 1967 Sov. Phys. JETP 53, 953.Google Scholar
Hairapetian, G. and Stenzel, R. L. 1988 Phys. Rev. Lett. 61, 1607.CrossRefGoogle Scholar
Hairapetian, G. and Stenzel, R. L. 1991 Phys. Fluids B 3, 899.CrossRefGoogle Scholar
Hau, L. N. and Fu, W.-Z. 2007 Phys. Plasmas 14, 110702.CrossRefGoogle Scholar
Huang, Y., Bi, Y., Duan, X., Lan, X., Wang, N., Tang, X. and He, Y. 2008 Appl. Phys. Lett. 92, 141504.CrossRefGoogle Scholar
Ikezi, H., Taylor, R. and Baker, D. 1970 Phys. Rev. Lett. 25, 11.CrossRefGoogle Scholar
Itina, T. E., Hermann, J., Delaporte, P. and Sentis, M. 2002 Phys. Rev. E 66, 066406.CrossRefGoogle Scholar
Landau, L. D. and Lifshitz, E. M. 1981 Physical Kinetics Pergamon, Landau Publisher/Pergamon, Oxford.Google Scholar
Leubner, M. P. 2004 Phys. Plasmas 11, 1308.CrossRefGoogle Scholar
Lynov, J. P., Michelsen, P., Pecseli, H. L., Rasmussen, J. J., Saeki, K. and Turikov, V. A. 1979 Phys. Scr. 20, 328.CrossRefGoogle Scholar
Mori, H., Ishii, M., Murayama, Y., Kubota, M., Sakanoi, K., Yamamoto, M. Y., Monzen, Y., Lummerzheim, D. and Watkins, B. J. 2004 Ann. Geophys. 22, 1613.CrossRefGoogle Scholar
Passoni, M., Bertagna, L. and Zani, A. 2010 Nucl. Inst. Meth. Phys. Res. A 620, 4650.CrossRefGoogle Scholar
Plyutto, A. A. 1961 Sov. Phys. JETP 12, 1106.Google Scholar
Romagnani, L.et al. 2008 Phys. Rev. Lett. 101, 025004.CrossRefGoogle Scholar
Sagdeev, R. Z. 1966 Reviews of plasma physics (ed. Leontovich, M. A.), M. A. Leontovich, New York Consultants Bureau, vol. 4, p. 23.Google Scholar
Schamel, H. 1979 Phys. Scr. 20, 306.CrossRefGoogle Scholar
Schippers, P.et al. 2008 J. Geophys. Res. 113, A07208.CrossRefGoogle Scholar
Shoub, E. C. 1983 Astrophys. J. 266, 339.CrossRefGoogle Scholar
Vasyliunas, V. M. 1968 J. Geophys. Res. 73, 2839.CrossRefGoogle Scholar
Verheest, F. and Pillay, S. R. 2008 Phys. Plasmas 15, 013703.CrossRefGoogle Scholar
Washimi, H. and Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Williams, G., Verheest, F., Hellberg, M. A., Anowar, M. G. and Kourakis, I. 2014 Phys. Plasmas 21, 092103.CrossRefGoogle Scholar