Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T07:13:04.006Z Has data issue: false hasContentIssue false

Analytical and numerical investigation of diffraction effects on the nonlinear propagation of ultra-intense few-cycle optical pulses in plasmas

Published online by Cambridge University Press:  01 October 2009

HARISH MALAV
Affiliation:
DST-Project, Vardhaman Mahaveer Open University (VMOU), Kota 324010, Rajasthan, India ([email protected]; [email protected]; [email protected])
K. P. MAHESHWARI
Affiliation:
DST-Project, Vardhaman Mahaveer Open University (VMOU), Kota 324010, Rajasthan, India ([email protected]; [email protected]; [email protected])
R. S. MEGHWAL
Affiliation:
Department of Physics, Government College, Kota 324001, Rajasthan, India ([email protected])
Y. CHOYAL
Affiliation:
School of Physics, Devi Ahilya Vishwavidhyalaya, Indore 452017, Madhya Pradesh, India ([email protected])
RAKESH SHARMA
Affiliation:
DST-Project, Vardhaman Mahaveer Open University (VMOU), Kota 324010, Rajasthan, India ([email protected]; [email protected]; [email protected])

Abstract

The propagation of intense few-cycle laser beams in plasma media is considered when the quiver velocity of the electron approaches the velocity of light c. The modifications in the spatio-temporal profile of the initial Gaussian beam are found to depend on the combined effect of relativistic plasma frequency and diffraction. The results of the variation of the temporal profile of the envelope at points on the axis as well away from the axis are presented. The results so obtained are compared with those of vacuum propagation. Pulses get broadened and frequency gets chirped as a result of diffraction, phase dispersion and relativistic mass correction. The effect of the plasma on the group velocity dispersion including curvatures of pulse and phase fronts in pulsed Gaussian beam is numerically investigated.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Wittmann, T., Horvath, B., Helml, W., Schätzel, M. G., Gu, X., Cavalieri, A. L., Paulus, G. G. and Kienberger, R. 2009 Nature Phys. 5, 357.CrossRefGoogle Scholar
[2]Kreß, M., Löffler, T., Thomson, M. D., Dörner, R., Gimpel, H., Zrost, K., Ergler, T., Moshammer, R., Morgner, U., Ullrich, J. and Roskos, H. G. 2006 Nature Phys. 2, 327.CrossRefGoogle Scholar
[3]Kröll, J., Darmo, J., Dhillon, S. S., Marcadet, X., Calligaro, M., Sirtori, C. and Unterrainer, K. 2007 Nature Phys. 449, 698.CrossRefGoogle Scholar
[4]Cavalieri, A. L., Müller, N., Uphues, Th., Yakovlev, V. S., Baltuška, A., Horvath, B., Schmidt, B., Blümel, L., Holzwarth, R., Hendel, S., Drescher, M., Kleineberg, U., Echnique, P. M., Kienberger, R., Krausz, F. and Heinzmann, U. 2007 Nature Phys. 449, 1029.CrossRefGoogle Scholar
[5]Kienberger, R., Goulielmakis, E., Uiberacker, M., Baltuska, A., Yakovlev, V., Bammer, F., Scrinzi, A., Westerwalbesloh, Th., Kleinberg, U., Heinzmann, U., Drescher, M. and Krausz, F. 2004 Nature Phys. 427, 817.CrossRefGoogle Scholar
[6]Krausz, F. and Ivanov, M. 2009 Rev. Mod. Phys. 81, 163.CrossRefGoogle Scholar
[7]Veisz, L., Schmid, K., Tavella, F., Benavides, S., Tautz, R., Herrmann, D., Buck, A., Hidding, B., Marcinkevicius, A., Schramm, U., Geissler, M., Meyer-ter-Vehn, J., Habs, D. and Krausz, F. 2009 C. R. Phys. 10, 140147.Google Scholar
[8]Harworth, C. A., Chipperfield, L. E., Robinson, J. S., Knight, P. L., Marangos, J. P. and Tisch, J. W. G. 2007 Nature Phys. 3, 5258.CrossRefGoogle Scholar
[9]Dromey, B., Rykovanov, S. G., Adams, D., Hörlein, R., Nomura, Y., Carroll, D. C., Foster, P. S., Kar, S., Markey, K., McKenna, P., Neely, D., Geissler, M., Tsakiris, G. D. and Zepf, M. 2009 Phys. Rev. Lett. 102, 225002.CrossRefGoogle Scholar
[10]Couairon, A. and Mysyrowicz, A. 2007 Phys. Rep. 441, 47189.Google Scholar
[11]Brabec, T. and Krausz, F. 2000 Rev. Mod. Phys. 72, 545.CrossRefGoogle Scholar
[12]Esarey, E. and Sprangle, P. 1997 IEEE J. Quantum Electron. 33, 1879.CrossRefGoogle Scholar
[13]Reed, S. A. 2008 Electron and proton acceleration using the 30 TW, 30 fs Hercules laser. Ph.D. Thesis, University of Michigan.Google Scholar
[14]Tian, Y., Yu, W., He, F., Xu, H., Senecha, V., Deng, D., Wang, Y., Li, R. and Xu, Z. 2006 Phys. Plasmas 13, 123106.CrossRefGoogle Scholar
[15]Kaplan, A. E. 1998 J. Opt. Soc. Am. B 15, 951.Google Scholar
[16]Porras, M. A. 1999 J. Opt. Soc. Am. B 16, 1468.CrossRefGoogle Scholar
[17]Porras, M. A. 1999 Phys. Rev. A 60, 5069.CrossRefGoogle Scholar
[18]Gibbon, P. 2005 Short Pulse Laser Interactions with Matter – An Introduction. London: Imperial College Press.Google Scholar
[19]Brabec, T. and Krausz, F. 1997 Phys. Rev. Letter 78, 3282.CrossRefGoogle Scholar
[20]Christo, I. P. 1985 Opt. Comm. 53, 364.Google Scholar
[21]Porras, M. A., Borghi, R. and Santarsiero, M. 2000 Phys. Rev. E 62, 5729.CrossRefGoogle Scholar
[22]Upadhyay, A., Tripathi, V. K. and Pant, H. C. 2001 Phys. Scripta 63, 326.CrossRefGoogle Scholar
[23]Ziolkowski, R. W. and Judkins, J. B. 1992 J. Opt. Soc. Am. A 9, 2021.Google Scholar
[24]Wang, Z., Zhang, Z., Xu, Z. and Lin, Q. 1997 IEEE J. Quantum Electron 33, 566.CrossRefGoogle Scholar
[25]Agrawal, G. P. 1998 Opt. Comm. 157, 52.CrossRefGoogle Scholar
[26]Porras, M. A. 1998 Phys. Rev. E 58, 1086.CrossRefGoogle Scholar
[27]Feng, S., Winful, H. G. and Hellwarth, R. W. 1999 Phys. Rev. E 59, 4630.CrossRefGoogle Scholar
[28]Agrawal, G. P. 1999 Opt. Comm. 167, 15.Google Scholar
[29]Porras, M. A. 2002 Phys. Rev. E 65, 026606.CrossRefGoogle Scholar
[30]Porras, M. A. 2001 Opt. Lett. 26, 1364.CrossRefGoogle Scholar
[31]Marklund, M., Eliasson, B. and Shukla, P. K. 2006 Phys. Plasmas 13, 083102.CrossRefGoogle Scholar
[32], B. and Liu, Z. 2003 Opt. Soc. Am. 1084, 7529.Google Scholar
[33]Hu, W. and Gua, H. 2002 J. Opt. Soc. Am. 19, 49.CrossRefGoogle Scholar