Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T00:49:54.836Z Has data issue: false hasContentIssue false

Analytic BGK modes and their modulational instability

Published online by Cambridge University Press:  13 March 2009

Hans Schamel
Affiliation:
Max-Planck-Institut für Physik und Astrophysik, Munich

Extract

Physically acceptable solutions of the time-independent Vlasov–Poisson system are found by applying a method which is analogous to the soliton method in Korteweg–de Vries theory. Cnoidal wave solutions for small-amplitude Langmuir and ion acoustic waves are derived, in which the nonlinearity is determined by trapped electrons. The class of weakly distorted waves is shown to be modulational unstable.

Type
Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernstein, I. B., Greene, J. M. & Kruskal, M. D. 1957 Phys. Rev. 108, 546.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
Dewar, R. L., Kruer, W. L. & Manheimer, W. M. 1972 Phys. Rev. Lett. 28, 215.CrossRefGoogle Scholar
Jeffrey, A. & Kakutani, T. 1972 SIAM Review, 14, 582.CrossRefGoogle Scholar
Karpman, V. I. & Krushkal, E. M. 1969 Soviet Phys. JETP, 28, 277.Google Scholar
Lighthill, M. J. 1965 J. Inst. Math. Appl. 1, 269.CrossRefGoogle Scholar
Morales, G. J. & O'Neil, T. M. 1972 Phys. Rev. Lett. 28, 417.CrossRefGoogle Scholar
Ozawa, Y., Kaji, I. & Kito, M. 1964 Plasma Phys. 6, 227.Google Scholar
Sagdeev, R. Z. 1966 Rev. Plasma Phys. 4, 23.Google Scholar
Schamel, H. 1972 Plasma Phys. 14, 905.CrossRefGoogle Scholar
Schamel, H. 1973 MPI-PAE/Astro. 57.Google Scholar
Taniuti, T. & Yajima, N. 1969 J. Math. Phys. 10, 1369.CrossRefGoogle Scholar