Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T04:35:27.788Z Has data issue: false hasContentIssue false

The Alfvénic nature of energy transfer mediation in localized, strongly nonlinear Alfvén wavepacket collisions

Published online by Cambridge University Press:  30 January 2018

J. L. Verniero*
Affiliation:
Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA
G. G. Howes
Affiliation:
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242, USA
*
Email address for correspondence: [email protected]

Abstract

In space and astrophysical plasmas, violent events or instabilities inject energy into turbulent motions at large scales. Nonlinear interactions among the turbulent fluctuations drive a cascade of energy to small perpendicular scales at which the energy is ultimately converted into plasma heat. Previous work with the incompressible magnetohydrodynamic (MHD) equations has shown that this turbulent energy cascade is driven by the nonlinear interaction between counterpropagating Alfvén waves – also known as Alfvén wave collisions. Direct numerical simulations of weakly collisional plasma turbulence enables deeper insight into the nature of the nonlinear interactions underlying the turbulent cascade of energy. In this paper, we directly compare four cases: both periodic and localized Alfvén wave collisions in the weakly and strongly nonlinear limits. Our results reveal that in the more realistic case of localized Alfvén wave collisions (rather than the periodic case), all nonlinearly generated fluctuations are Alfvén waves, which mediates nonlinear energy transfer to smaller perpendicular scales.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, I. G., Barnes, M., Cowley, S. C., Dorland, W. & Schekochihin, A. A. 2008 Linearized model Fokker–Planck collision operators for gyrokinetic simulations. I. Theory. Phys. Plasmas 15 (12), 122509.Google Scholar
Barnes, M., Abel, I. G., Dorland, W., Ernst, D. R., Hammett, G. W., Ricci, P., Rogers, B. N., Schekochihin, A. A. & Tatsuno, T. 2009 Linearized model Fokker–Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests. Phys. Plasmas 16 (7), 072107.Google Scholar
Borovsky, J. E. & Denton, M. H. 2011 No evidence for heating of the solar wind at strong current sheets. Astrophys. J. Lett. 739, L61.Google Scholar
Drake, D. J., Howes, G. G., Rhudy, J. D., Terry, S. K., Carter, T. A., Kletzing, C. A., Schroeder, J. W. R. & Skiff, F. 2016 Measurements of the nonlinear beat wave produced by the interaction of counterpropagating Alfven waves. Phys. Plasmas 23 (2), 022305.Google Scholar
Drake, D. J., Schroeder, J. W. R., Howes, G. G., Kletzing, C. A., Skiff, F., Carter, T. A. & Auerbach, D. W. 2013 Alfvén wave collisions, the fundamental building block of plasma turbulence. IV. Laboratory experiment. Phys. Plasmas 20 (7), 072901.Google Scholar
Frieman, E. A. & Chen, L. 1982 Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria. Phys. Fluids 25, 502508.Google Scholar
Galtier, S., Nazarenko, S. V., Newell, A. C. & Pouquet, A. 2000 A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 63, 447488.Google Scholar
Goldreich, P. & Sridhar, S. 1995 Toward a theory of interstellar turbulence II. Strong Alfvénic turbulence. Astrophys. J. 438, 763775.Google Scholar
Howes, G. G. 2016 The dynamical generation of current sheets in astrophysical plasma turbulence. Astrophys. J. Lett. 827, L28.CrossRefGoogle Scholar
Howes, G. G. 2017 Ronald C. Davidson award 2016: a prospectus on kinetic heliophysics. Phys. Plasmas 24 (5), 055907.Google Scholar
Howes, G. G. & Bourouaine, S. 2017 The development of magnetic field line wander by plasma turbulence. J. Plasma Phys. 83 (4), 905830408.Google Scholar
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2006 Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651, 590614.Google Scholar
Howes, G. G., Drake, D. J., Nielson, K. D., Carter, T. A., Kletzing, C. A. & Skiff, F. 2012 Toward astrophysical turbulence in the laboratory. Phys. Rev. Lett. 109 (25), 255001.Google Scholar
Howes, G. G., Klein, K. G. & Li, T. C. 2017 Diagnosing collisionless energy transfer using wave-particle correlations: Vlasov-Poisson plasmas. J. Plasma Phys. 83 (1), 705830102.Google Scholar
Howes, G. G., McCubbin, A. J. & Klein, K. G. 2018 Spatial localization of particle energization in current sheets produced by Alfvén wave collisions. J. Plasma Phys. 84 (1), 905840105.Google Scholar
Howes, G. G. & Nielson, K. D. 2013 Alfvén wave collisions, the fundamental building block of plasma turbulence. I. Asymptotic solution. Phys. Plasmas 20 (7), 072302.Google Scholar
Howes, G. G., Nielson, K. D., Drake, D. J., Schroeder, J. W. R., Skiff, F., Kletzing, C. A. & Carter, T. A. 2013 Alfvén wave collisions, the fundamental building block of plasma turbulence. III. Theory for experimental design. Phys. Plasmas 20 (7), 072304.Google Scholar
Iroshnikov, R. S. 1963 The turbulence of a conducting fluid in a strong magnetic field. Astron. Zh. 40, 742; English Translation: Sov. Astron. 7, 566 (1964).Google Scholar
Karimabadi, H., Roytershteyn, V., Wan, M., Matthaeus, W. H., Daughton, W., Wu, P., Shay, M., Loring, B., Borovsky, J., Leonardis, E. et al. 2013 Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys. Plasmas 20 (1), 012303.Google Scholar
Klein, K. G. & Howes, G. G. 2016 Measuring collisionless damping in heliospheric plasmas using field-particle correlations. Astrophys. J. Lett. 826, L30.Google Scholar
Klein, K. G., Howes, G. G. & TenBarge, J. M. 2017 Diagnosing collisionless energy transfer using field-particle correlations: gyrokinetic turbulence. J. Plasma Phys. 83 (4), 535830401.Google Scholar
Kraichnan, R. H. 1965 Inertial range spectrum of hyromagnetic turbulence. Phys. Fluids 8, 13851387.Google Scholar
Matthaeus, W. H. & Montgomery, D. 1980 Selective decay hypothesis at high mechanical and magnetic Reynolds numbers. Ann. N.Y. Acad. Sci. 357, 203222.Google Scholar
Meneguzzi, M., Frisch, U. & Pouquet, A. 1981 Helical and nonhelical turbulent dynamos. Phys. Rev. Lett. 47, 10601064.Google Scholar
Montgomery, D. & Matthaeus, W. H. 1995 Anisotropic modal energy transfer in interstellar turbulence. Astrophys. J. 447, 706.Google Scholar
Ng, C. S. & Bhattacharjee, A. 1996 Interaction of shear-Alfven wave packets: implication for weak magnetohydrodynamic turbulence in astrophysical plasmas. Astrophys. J. 465, 845.CrossRefGoogle Scholar
Nielson, K. D.2012 Analysis and gyrokinetic simulation of MHD Alfven wave interactions. PhD thesis, The University of Iowa.Google Scholar
Nielson, K. D., Howes, G. G. & Dorland, W. 2013 Alfvén wave collisions, the fundamental building block of plasma turbulence. II. Numerical solution. Phys. Plasmas 20 (7), 072303.Google Scholar
Numata, R., Howes, G. G., Tatsuno, T., Barnes, M. & Dorland, W. 2010 AstroGK: astrophysical gyrokinetics code. J. Comput. Phys. 229, 9347.CrossRefGoogle Scholar
Osman, K. T., Matthaeus, W. H., Gosling, J. T., Greco, A., Servidio, S., Hnat, B., Chapman, S. C. & Phan, T. D. 2014 Magnetic reconnection and intermittent turbulence in the solar wind. Phys. Rev. Lett. 112 (21), 215002.Google Scholar
Osman, K. T., Matthaeus, W. H., Greco, A. & Servidio, S. 2011 Evidence for inhomogeneous heating in the solar wind. Astrophys. J. Lett. 727, L11.Google Scholar
Osman, K. T., Matthaeus, W. H., Wan, M. & Rappazzo, A. F. 2012 Intermittency and local heating in the solar wind. Phys. Rev. Lett. 108 (26), 261102.Google Scholar
Perri, S., Goldstein, M. L., Dorelli, J. C. & Sahraoui, F. 2012 Detection of small-scale structures in the dissipation regime of solar-wind turbulence. Phys. Rev. Lett. 109 (19), 191101.Google Scholar
Sridhar, S. & Goldreich, P. 1994 Toward a theory of interstellar turbulence. 1: weak Alfvenic turbulence. Astrophys. J. 432, 612621.Google Scholar
TenBarge, J. M. & Howes, G. G. 2013 Current sheets and collisionless damping in kinetic plasma turbulence. Astrophys. J. Lett. 771, L27.Google Scholar
Uritsky, V. M., Pouquet, A., Rosenberg, D., Mininni, P. D. & Donovan, E. F. 2010 Structures in magnetohydrodynamic turbulence: detection and scaling. Phys. Rev. E 82 (5), 056326.Google Scholar
Verniero, J. L., Howes, G. G. & Klein, K. G. 2018 Nonlinear energy transfer and current sheet development in localized Alfvén wavepacket collisions in the strong turbulence limit. J. Plasma Phys. 84 (1), 905840103.Google Scholar
Wan, M., Matthaeus, W. H., Karimabadi, H., Roytershteyn, V., Shay, M., Wu, P., Daughton, W., Loring, B. & Chapman, S. C. 2012 Intermittent dissipation at kinetic scales in collisionless plasma turbulence. Phys. Rev. Lett. 109 (19), 195001.Google Scholar
Wang, X., Tu, C., He, J., Marsch, E. & Wang, L. 2013 On intermittent turbulence heating of the solar wind: differences between tangential and rotational discontinuities. Astrophys. J. Lett. 772, L14.Google Scholar
Wu, P., Perri, S., Osman, K., Wan, M., Matthaeus, W. H., Shay, M. A., Goldstein, M. L., Karimabadi, H. & Chapman, S. 2013 Intermittent heating in solar wind and kinetic simulations. Astrophys. J. Lett. 763, L30.Google Scholar
Zhdankin, V., Uzdensky, D. A., Perez, J. C. & Boldyrev, S. 2013 Statistical analysis of current sheets in three-dimensional magnetohydrodynamic turbulence. Astrophys. J. 771, 124.Google Scholar