Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T08:11:37.587Z Has data issue: false hasContentIssue false

Alfvén eigenmodes in magnetic X-point configurations with strong longitudinal fields

Published online by Cambridge University Press:  01 April 2009

N. BEN AYED
Affiliation:
Department of Physics, University of York, Heslington, York YO10 5DD, UK ([email protected])
K. G. McCLEMENTS
Affiliation:
EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK
A. THYAGARAJA
Affiliation:
EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK

Abstract

A perturbative three-dimensional analysis is presented of Alfvén waves in a magnetic X-point configuration with a strong longitudinal guide field. The waves are assumed to propagate in the direction of the X-line, and both the plasma beta and equilibrium plasma current are taken to be zero. This provides a simple model of Alfvén wave propagation in the divertor region of tokamak plasmas. It is shown that the presence of the X-point places constraints on the structure of the leading-order (shear Alfvén) eigenfunctions. These eigenfunctions, and fast wave corrections to them, are determined explicitly for two cases. In the first of these the stream function for the shear Alfvén flow is azimuthally symmetric in the X-point plane and singular at the X-line; in the second case the stream function is largely confined to two quadrants in the X-point plane and is non-singular. For the latter scenario it is shown that coupling of the shear and fast waves is strongly localized to the vicinity of the separatrix.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bulanov, S. V. and Syrovatskii, S. I. 1980 Sov. J. Plasma Phys. 6, 661.Google Scholar
Bulanov, S. V., Shasharina, S. G. and Pegoraro, F. 1992 Plasma Phys. Control. Fusion 34, 33.CrossRefGoogle Scholar
Craig, I. J. D. and Watson, P. G. 1992 Astrophys. J. 393, 385.CrossRefGoogle Scholar
Donné, A. H., van Gorkom, J. C., Udintsev, V. S., Domier, C. W., Krämer-Flecken, A., Luhmann, N. C. Jr., Schüller, F. C. and TEXTOR team 2005 Phys. Rev. Lett. 94, 085001.CrossRefGoogle Scholar
Farina, D., Pozzoli, R. and Ryutov, D. D. 1993 Nucl. Fusion 33, 1315.CrossRefGoogle Scholar
Kirk, A. et al. 2006 Plasma Phys. Control. Fusion 48, B433.CrossRefGoogle Scholar
McClements, K. G., Thyagaraja, A., Ben Ayed, N. and Fletcher, L. 2004 Astrophys. J. 609, 423.CrossRefGoogle Scholar
McClements, K. G., Shah, N. and Thyagaraja, A. 2006 J. Plasma Phys. 72, 571.CrossRefGoogle Scholar
McClymont, A. N. and Craig, I. J. D. 1996 Astrophys. J. 466, 487.CrossRefGoogle Scholar
McKay, R. J., McClements, K. G. and Fletcher, L. 2007 Astrophys. J. 658, 631.CrossRefGoogle Scholar
Myra, J. R., D'Ippolito, D. A., Xu, X. Q. and Cohen, R. H. 2000 Contrib. Plasma Phys. 40, 352.3.0.CO;2-1>CrossRefGoogle Scholar
McLaughlin, J. A. and Hood, A.W. 2004 Astron. Astrophys. 420, 1129.CrossRefGoogle Scholar