Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T21:28:13.085Z Has data issue: false hasContentIssue false

The visual system and paleoecology of the Silurian ostracod Primitiopsis planifrons

Published online by Cambridge University Press:  14 July 2015

Gengo Tanaka
Affiliation:
1Gunma Museum of Natural History, 1674-1 Kamikuroiwa, Tomioka, Gunma, 370-2345, Japan,
David J. Siveter
Affiliation:
2Department of Geology, University of Leicester, Leicester LE1 7RH, UK
Andrew R. Parker
Affiliation:
3Department of Zoology, the Natural History Museum, London SW7 5BD, UK 4Department of Biological Sciences, University of Sydney, NSW 2006, Australia

Abstract

Here we report the first detailed reconstruction of the eye and visual system of a Paleozoic ostracod, namely the dimorphic primitiopsid (Palaeocopa) Primitiopsis planifrons Jones, 1887. Evidence from the cuticular lens morphology and its position on the valve suggests that P. planifrons had a naupliar eye, which is the most common optical system in crustaceans. the characters of the eye, such as the separated cuticular lens on each valve and the strongly calcified nature of the lens and its diameter, are concordant with that of some Recent podocopid ostracods in which a divided type of naupliar eye is present. Ray tracing of the reconstructed cuticular lens of the primitiopsid species demonstrates strong spherical aberration and a very long focal length (as in the eye of podocopids), which implies the presence of a spherical mirror (tapetum) below the lens. Study of the ontogenetic change of the valve thickness aids the suggestion that P. planifrons was nektobenthic. the size of its cuticular lens in relation to that of living podocopid ostracods, and the water depth at which these Recent forms occur, indicates that P. planifrons may have lived in a relatively shallow, well lit environment such as the deep subtidal zone. These interpretations are consistent with supposed paleoenvironmental conditions derived from geological evidence. Thus, analysis of the nature and relative size of the eye gives an independent test to help identify paleoenvironmental parameters of long extinct ostracods.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K. 1983. Population structure of Keijella bisanensis (Okubo) (Ostracoda, Crustacea)—An inquiry into how far the population structure will be preserved in the fossil record. Journal of the Faculty of Science, University of Tokyo, Section 2, 20:443488.Google Scholar
Andersson, A. and Nilsson, D. E. 1981. Fine structure and optical properties of an ostracode (Crustacea) nauplius eye. Protoplasma, 107:361374.CrossRefGoogle Scholar
Benson, R. H., Berdan, J. M., van den Bold, W. A., Hanai, T., Hessland, I., Howe, H. V., Kesling, R. V., Levinson, S. A., Reyment, R. A., Moore, R. C., Scott, H. W., Shaver, R. H., Sohn, I. G., Stover, L. E., Swain, F. M., and Sylvester-Bradley, P. C. 1961. Systematic descriptions, Q99-Q421. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part Q, Arthropoda 3, Geological Society of America, Boulder and University of Kansas Press, Kansas.Google Scholar
Benson, R. H. 1975. Morphologic stability in Ostracoda. Bulletins of American Paleontology, 65:1346.Google Scholar
Benson, R. H. 1981. Form, function, and architecture of ostracode shells. Annual Review of Earth and Planetary Sciences, 9:5980.CrossRefGoogle Scholar
Berek, M. 1930. Grundlagen der praktischen Optik; Analyse und Synthese optischer Systeme. Japanese translation byMiyake, K.1970. The principle of the lens design. Kodansha, Tokyo. 214 p. (In Japanese)Google Scholar
Bonaduce, G. and Danielopol, D. L. 1988. To see and not to be seen: The evolutionary problems of the Ostracoda Xestoleberididae, p. 375398. In Hanai, T., Ikeya, N., and Ishizaki, K. (eds.), Evolutionary biology of Ostracoda, its fundamentals and applications, Kodansha, Tokyo.Google Scholar
Brett, C. E., Boucot, A. J., and Jones, B. 1993. Absolute depths of Silurian benthic assemblages. Lethaia, 26:2540.CrossRefGoogle Scholar
Calner, M. and Jeppsson, L. 2003. Carbonate platform evolution and conodont stratigraphy during the middle Silurian Mulde Event, Gotland, Sweden. Geological Magazine, 140:173203.CrossRefGoogle Scholar
Claus, C. 1891. Das Medianauge der Crustaceen. Arbeiten aus dem Zoologischen Institut der Universität zu Wien, 9:225266. (In German)Google Scholar
Elofsson, R. 1963. The nauplius eye and frontal organs in Decapoda (Crustacea). Sarsia, 12:168.CrossRefGoogle Scholar
Elofsson, R. 1965. The nauplius eye and frontal organs in Malacostraca (Crustacea). Sarsia, 19:154.CrossRefGoogle Scholar
Elofsson, R. 1966. The nauplius eye and frontal organs of the non Malacostraca (Crustacea). Sarsia, 25:1128.CrossRefGoogle Scholar
Hede, J. E. 1921. Gotlands silurstratigrafi. Sveriges Geologiska Undersökning C, 305:1100. (In Swedish)Google Scholar
Hede, J. E. 1960. The lower Palaeozoic of Scania, the Silurian of Gotland. The Geological Survey of Sweden, Uppsala, 87 p.Google Scholar
Horne, D. J., Smith, R. J., Whittaker, J. E., and Murray, J. W. 2004. The first British record and a new species of the superfamily Terrestricytheroidea (Crustacea, Ostracoda): morphology, ontogeny, lifestyle and phylogeny. Zoological Journal of the Linnean Society, 142:253288.CrossRefGoogle Scholar
Huvard, A. L. 1990a. The ultrastructure of the compound eye of two species of ostracodes (Crustacea: Ostracoda: Cypridinidae). Acta Zoologica (Stockholm), 71:217223.CrossRefGoogle Scholar
Huvard, A. L. 1990b. Ultrastructural study of the naupliar eye of the ostracode Vargula graminicola (Crustacea: Ostracoda). Zoomorphology, 110:4751.CrossRefGoogle Scholar
Jones, T. R. 1887. Notes on some Silurian Ostracoda from Gothland. Stockholm, 18.Google Scholar
Kamiya, T. 1988. Morphological and ethological adaptations of Ostracoda to microhabitats in Zostera Beds, p. 303318. In Hanai, T., Ikeya, N., and Ishizaki, K. (eds.), Evolutionary biology of Ostracoda, its fundamentals and applications. Kodansha, Tokyo.Google Scholar
Kontrovitz, M. 1990. Observations on the ontogeny of the ocular sinus in a species of Echinocythereis, p. 411418. In Whatley, R. and Maybury, C. (eds.), Ostracoda and global events, Chapman and Hall, London.CrossRefGoogle Scholar
Land, M. F. and Nilsson, D. E. 1990. Observations on the compound eye of the deep-sea ostracod Macrocypridina castanea. Journal of Experimental Biology, 148:221233.CrossRefGoogle Scholar
Martinsson, A. 1955. Studies on the ostracode family Primitiopsidae. Bulletin of the Geological Institutions of Uppsala, 36:133.Google Scholar
Martinsson, A. 1956. Ontogeny and development of dimorphism in some Silurian ostracodes. A study on the Mulde marl fauna of Gotland. Bulletin of the Geological Institutions of Uppsala, 37:142.Google Scholar
Müller, G. W. 1894. Die Ostracoden des Golfes von Neapel und der angrenzenden Meeres-abschnitte-Fauna und Flora des Golfes von Neapel und der Angrenzenden meeres. Abschnitte, Herausgegeben von der Zoologischen Station zu Neapel, 21:1404. (In German)Google Scholar
Nowikoff, M. 1908. Über den Bau des Medianauges der Ostracoden. Zeitschrift f. wissensch Zoologie, 91:8192. (In German)Google Scholar
Ozawa, H., Ikehara, K., and Katayama, H. 1999. Recent ostracode fauna in the northeastern part of the Japan Sea, off northwestern Hokkaido, p. 103117. In Ikehara, K. and Okamura, Y. (eds.), Comprehensive study on environmental changes in the western Hokkaido coastal area and study on evolution of marine active faults. Geological Survey of Japan, Tsukuba.Google Scholar
Perrier, V., Vannier, J., and Siveter, D. J. 2007. The Silurian pelagic myodocope ostracod Richteria migrans. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 98:151163.CrossRefGoogle Scholar
Rome, R. 1947. Herpetocypris reptans Baird (Ostracoda), étude morphologigue et histologique: I. Morphologie externe et système nerveux. Cellule, 51:51152. (In French)Google Scholar
Siveter, D. J. 1984. Habitats and modes of life of Silurian ostracodes, p. 7185. In Bassett, M. G. and Lawson, J. D. (eds.), Autecology of Silurian organisms, Special Papers in Palaeontology 32.Google Scholar
Siveter, D. J. 2008. Ostracod in the Palaeozoic? Senckenbergiana lethaea, 88:19.CrossRefGoogle Scholar
Siveter, D. J., Siveter, D. J., Sutton, M. D., and Briggs, D. E. G. 2007. Brood care in a Silurian ostracod. Proceedings of the Royal Society of London, Series B, 274:465469.Google Scholar
Siveter, D. J., Sutton, M. D., Briggs, D. E. G., and Siveter, D. J. 2003. An ostracode crustacean with soft parts from the Lower Silurian. Science, 300:17491751.CrossRefGoogle Scholar
Siveter, D. J., Vannier, J. M. C., and Palmer, D. 1987. Silurian myodocopid ostracodes: Their depositional environments and the origin of their shell microstructures. Palaeontology, 30:783813.Google Scholar
Siveter, D. J., Vannier, J. M. C., and Palmer, D. 1991. Silurian myodocopes: Pioneer pelagic ostracodes and the chronology of an ecological shift. Journal of Micropalaeontology, 10:151173.CrossRefGoogle Scholar
Tanaka, G., Seto, K., and Takayasu, K., 1998. The relationship between environments and ostracode assemblages from Miho Bay to Lake Shinji. Lagna 5:8191. (In Japanese with English abstract)Google Scholar
Tanaka, G. 2005. Morphological design and fossil record of the podocopid ostracod naupliar eye. Hydrobiologia, 538:231242.CrossRefGoogle Scholar
Tanaka, G. 2006. Functional morphology and light-gathering ability of podocopid ostracod eyes and the palaeontological implications. Zoological Journal of the Linnean Society, 147:97108.CrossRefGoogle Scholar
Tanaka, G. 2008. Recent benthonic ostracod assemblages as indicators of the Tsushima Warm Current in the southwestern Sea of Japan. Hydrobiologia, 598:271284.CrossRefGoogle Scholar
Tsukawaki, S., Ozawa, H., Domitsu, H., Tanaka, Y., Kamiya, T., Kato, M., and Oda, M. 1999. Preliminary results from the R. V. Tansei-maru Cruise KT97-15 in the eastern marginal part of the Japan Sea off Tsugaru Peninsula, northeast Japan-sediments, benthic and planktonic foraminifers, and ostracodes. Bulletin of the Japan Sea Research Institute, 30:99140.Google Scholar
Vannier, J. M. C. and Abe, K. 1992. Recent and early Palaeozoic myodocope ostracodes: Functional morphology, phylogeny, distribution and lifestyles. Palaeontology, 35:485517.Google Scholar
Vannier, J. M. C., Siveter, D. J., and Schallreuter, R. E. L. 1989. The composition and palaeogeographical significance of the Ordovician ostracode faunas of Southern Britain, Baltoscandia, and Ibero-America. Palaeontology, 32:163222.Google Scholar
Vannier, J. M. C., Wang, S.-Q., and Coen, M. 2001. Leperditicopid arthropods (Ordovician–Late Devonian): Functional morphology and ecological range. Journal of Paleontology, 75:7595.2.0.CO;2>CrossRefGoogle Scholar
Whatley, R. C., Siveter, D. J., and Boomer, I. D. 1993. Arthropoda (Crustacea: Ostracoda), p. 343356. In Benton, M. J. (ed.), The fossil record 2. Chapman and Hall, London.Google Scholar
Williams, M., Floyd, J. D., Salas, M. J., Siveter, D. J., Stone, P., and Vannier, J. M. C. 2003. Patterns of ostracod migration for the “North Atlantic” region during the Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology, 195:193228.CrossRefGoogle Scholar