Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T13:11:27.909Z Has data issue: false hasContentIssue false

Variable growth modes in Late Cretaceous ammonoids: implications for diverse early life histories

Published online by Cambridge University Press:  20 May 2016

Kazato Arai
Affiliation:
Faculty of Education and Human Sciences, Yokohama National University, Yokohama 240-8501, Japan
Ryoji Wani
Affiliation:
Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan,

Abstract

Examination of ontogenetic changes in the septal angle of Late Cretaceous ammonoids (ten species representing seven superfamilies and four suborders) reveals four patterns: 1) a single abrupt change in septal angle; 2) two abrupt changes in septal angle; 3) cyclic fluctuations in septal angle throughout ontogeny; and 4) an almost constant septal angle throughout ontogeny. These various septal-angle patterns in Late Cretaceous ammonoids are in contrast with modern and fossil nautiloids, which have the common pattern displaying a single abrupt change in septal angles. Although the abrupt change of septal angles in nautiloids corresponds with the hatching event from the egg, change of septal angles in the examined ammonoids is hypothesized to correspond not to hatching but to the change from a planktic to a nektobenthic habit demarcated by the post-embryonic stage. Therefore, the variable patterns of septal angles within ammonoids suggest a diverse set of early life histories.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, J. M., Landman, N. H., and Mutvei, H. 1987. Development of the embryonic shell of Nautilus, p. 373400. InSaunders, W. B. and Landman, N. H.(eds.), Nautilus. Plenum Press, New York.Google Scholar
Bucher, H., Landman, N. H., Guex, J., and Klofak, S. M. 1996. Mode and rate of growth in ammonoids, p. 407461. InLandman, N. H., Tanabe, K., and Davis, R. A.(eds.), Ammonoid Paleobiology. Plenum Press, New York.Google Scholar
Callomon, J. H. 1963. Sexual dimorphism in Jurassic ammonites. Transactions of the Leicester Literary and Philosophical Society, 57:2156.Google Scholar
Checa, A. 1987. Morphogenesis in ammonites—Differences linked to growth pattern. Lethaia, 20:141148.Google Scholar
Chirat, R. 2001. Anomalies of embryonic shell growth in post-Triassic Nautilida. Paleobiology, 27:485499.Google Scholar
Chirat, R., Enay, R., Hantzpergue, P., and Mangold, C. 2008. Developmental integration related to buoyancy control in nautiloids: Evidence from unusual septal approximation and ontogenetic allometries in a Jurassic species. Palaeontology, 51:251261.Google Scholar
Chirat, R. and Rioult, M. 1998. Occurrence of early post-hatching Jurassic Nautilida in Normandy, France: Palaeobiologic, palaeoecologic and palaeobiogeographic implications. Lethaia, 31:137148.Google Scholar
Cochran, J. K., Rye, D. M., and Landman, N. H. 1981. Growth rate and habitat of Nautilus pompilius inferred from radioactive and stable isotope studies. Paleobiology, 7:469480.Google Scholar
Collins, D. and Ward, P. D. 1987. Adolescent growth and maturity in Nautilus, p. 421432. InSaunders, W. B. and Landman, N. H.(eds.), Nautilus. Plenum Press, New York.Google Scholar
Crick, R. E. 1978. Morphological variations in the ammonite Scaphites of the Blue Hill Member, Carlile Shale, Upper Cretaceous, Kansas. University of Kansas Paleontological Contributions, 88:128.Google Scholar
Davis, R. A., Landman, N. H., Dommergues, J-L., Marchand, D., and Bucher, H. 1996. Mature modifications and dimorphism in ammonoid cephalopods, p. 463539. InLandman, N. H.Tanabe, K., and Davis, R. A.(eds.), Ammonoid Paleobiology. Plenum Press, New York.Google Scholar
Davis, R. A. and Mohorter, W. 1973. Juvenile Nautilus from the Fiji Islands. Journal of Paleontology, 47:925928.Google Scholar
Doguzhaeva, L. 1982. Rhythms of ammonoid shell secretion. Lethaia, 15:385394.CrossRefGoogle Scholar
Dommergues, J-L. 1988. Can ribs and septa provide an alternate standard for age in ammonite ontogenetic studies? Lethaia, 21:243256.Google Scholar
Druschits, V. V., Doguzhaeva, L. A., and Mikhailova, I. A. 1977. The structure of the ammonitella and the direct development of ammonites. Paleontological Journal, 11:188199.Google Scholar
Drushchits, V. V. and Khiami, N. 1970. Structure of the septa, protoconch walls and initial whorls in Early Cretaceous ammonites. Paleontological Journal, 1:2638.Google Scholar
Ebbighausen, V. and Korn, D. 2007. Conch geometry and ontogenetic trajectories in the triangularly coiled Late Devonian ammonoid Wocklumeria and related genera. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 244:941.Google Scholar
Eichler, R. and Ristedt, H. 1966. Untersuchungen zur Frühontogenie von Nautilus pompilius (Linne). Paläontologische Zeitschrift, 40:173191.Google Scholar
Forbes, E. 1846. Report on the fossil Invertebrata from Southern India, collected by Mr. Kaye and Mr. Cunliffe. Transactions of the Geological Society of London, Second Series, 7:97174.Google Scholar
Jimbo, K. 1894. Beiträge zur kenntniss der fauna der Kreideformation von Hokkaido. Palaeontologische Abhandlungen, Neue Folge, 2:149194.Google Scholar
Klofak, S., Landman, N. H., and Mapes, R. H. 2007. Patterns of embryonic development in Early to Middle Devonian ammonoids, p. 1556. InLandman, N. H., Davis, R. A., and Mapes, R. H.(eds.), Cephalopods, Present and Past. Springer, New York.Google Scholar
Klug, C. 2001. Life-cycles of Emsian and Eifelian ammonoids (Devonian). Lethaia, 34:215233.Google Scholar
Klug, C. 2004. Mature modifications, the black band, the black aperture, the black stripe, and the periostracum in cephalopods from the upper Muschelkalk (Middle Triassic, Germany). Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universitat Hamburg, 88:6378.Google Scholar
Klug, C., Meyer, E. P., Richter, U., and Korn, D. 2008. Soft-tissue imprints in fossil and Recent cephalopod septa and septum formation. Lethaia, 41:477492.Google Scholar
Klug, C., Brühwiler, T., Korn, D., Schweigert, G., Brayard, A., and Tilsley, J. 2007. Ammonoid shell structures of primary organic composition. Palaeontology, 50:14631478.Google Scholar
Korn, D. and Titus, A. 2006. The ammonoids from the Three Forks Shale (Late Devonian) of Montana. Fossil Record, 9:198212.Google Scholar
Kraft, S., Korn, D., and Klug, C. 2008. Ontogenetic patterns of septal spacing in Carboniferous ammonoids. Neues Jahrbuch für Geologie und Mineralogie, Abhandlungen, 250:3144.CrossRefGoogle Scholar
Kulicki, C. 1974. Remarks on the embryogeny and postembryonal development of ammonites. Acta Palaeontologica Polonica, 39:97142.Google Scholar
Kulicki, C. 1979. The ammonite shell: its structure, development and biological significance. Palaeontologica Polonica, 39:1744.Google Scholar
Kulicki, C. 1996. Ammonoid shell microstructure, p. 65101. InLandman, N. H., Tanabe, K., and Davis, R. A.(eds.), Ammonoid Paleobiology. Plenum Press, New York.Google Scholar
Landman, N. H. 1982. Embryonic shell of Baculites. Journal of Paleontology, 56:12351241.Google Scholar
Landman, N. H. 1985. Preserved ammonitellas of Schaphites (Ammonoidea, Ancyloceratina). American Museum Novitates, 2815:110.Google Scholar
Landman, N. H. 1987. Ontogeny of Upper Cretaceous (Turonian–Santonian) scaphitid ammonites from the Western Interior of North America: Systematics, developmental patterns and life history. Bulletin of American Museum of National History, 185:118241.Google Scholar
Landman, N. H. 1988. Early ontogeny of Mesozoic ammonites and nautilids, p. 215228. InWiedmann, J. and Kullmann, J.(eds.), Cephalopods, Present and Past. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.Google Scholar
Landman, N. H., Cochran, J. K., Rye, D. M., Tanabe, K., and Arnold, J. M. 1994. Early life history of Nautilus: Evidence from isotopic analyses of aquarium-reared specimens. Paleobiology, 20:4051.Google Scholar
Landman, N. H., Rye, D. M., and Shelton, K. L. 1983. Early ontogeny of Eutrephoceras compared to Recent Nautilus and Mesozoic ammonites: Evidence from shell morphology and light stable isotopes. Paleobiology, 9:269279.Google Scholar
Landman, N. H., Tanabe, K., and Shigeta, Y. 1996. Ammonoid embryonic development, p. 343405. InLandman, N. H., Tanabe, K., and Davis, R. A.(eds.), Ammonoid Paleobiology. Plenum Press, New York.Google Scholar
Landman, N. H. and Waage, K. H. 1993. Scaphitid ammonites of the Upper Cretaceous (Maastrichitian) Fox Hills Formation in South Dakota and Wyoming. Bulletin of the American Museum of Natural History, 215:1257.Google Scholar
Mapes, R. H. and Nützel, A. 2009. Late Palaeozoic mollusc reproduction: Cephalopod egg-laying behavior and gastropod larval palaeobiology. Lethaia, 42:341356.Google Scholar
Matsumoto, T. 1970. A monograph of the Collignoniceratidae from Hokkaido, Part IV. Memoirs of the Faculty of Science, Kyushu University, Series D, 20:225304.Google Scholar
Moriya, K., Nishi, H., Kawahata, H., Tanabe, K., and Takayanagi, Y. 2003. Demersal habitat of Late Cretaceous ammonoids: Evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology, 31:167170.Google Scholar
Oba, T., Kai, M., and Tanabe, K. 1992. Early life history and habitat of Nautilus pompilius inferred from oxygen isotope examinations. Marine Biology, 113:211217.Google Scholar
Okamoto, T. and Shibata, M. 1997. A cyclic mode of shell growth and its implications in a Late Cretaceous heteromorphy ammonite Polyptychoceras pseudogaultinum (Yokoyama). Paleontological Research, 1:2946.Google Scholar
Rouget, I. and Neige, P. 2001. Embryonic ammonoid shell features: Intraspecific variation revised. Palaeontology, 44:5364.Google Scholar
Ruzhencev, V. E. and Shimansky, V. E. 1954. Lower Permian coiled and curved nautiloids of the southern Urals. Transactions of the Paleontological Institute, 50:1152. (In Russian)Google Scholar
Shigeta, Y. 1993. Post-hatching early life history of Cretaceous Ammonoidea. Lethaia, 26:133145.Google Scholar
Shimizu, S. 1934. Ammonites. InSimizu, S., and Obata, T.(eds.), Cephalopoda. Iwanami's Lecture Series of Geology and Palaeontology, Tokyo, 137 p. (In Japanese)Google Scholar
Smith, J. P. 1901. The larval coil of Baculites. American Naturalist, 35:3949.Google Scholar
Tajika, A. and Wani, R. 2011. Intraspecific variation of hatchling size in Late Cretaceous ammonoids from Hokkaido, Japan: Implication for planktic duration at early ontogenetic stage. Lethaia, 44:287298.Google Scholar
Takashima, R., Kawabe, F., Nishi, H., Moriya, K., Wani, R., and Ando, H. 2004. Geology and stratigraphy of forearc basin sediments in Hokkaido, Japan: Cretaceous environmental events on the north-west Pacific margin. Cretaceous Research, 25:365390.Google Scholar
Tanabe, K., Fukuda, Y., and Obata, I. 1980. Ontogenetic development and functional morphology in the early growth stages of three Cretaceous ammonites. Bulletin of National Science Museum, Series C, 6:926.Google Scholar
Tanabe, K., Hirano, H., Matsumoto, T., and Miyata, Y. 1977. Stratigraphy of the Upper Cretaceous deposits in the Obira area, northwestern Hokkaido. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, 12:181202. (In Japanese)Google Scholar
Tanabe, K., Kulicki, C., Landman, N. H., and Mapes, R. H. 2001. External shell features of embryonic and early postembryonic shells of a Carboniferous goniatite Vidrioceras from Kansas. Paleontological Research, 5:1319.Google Scholar
Tanabe, K., Landman, N. H., Mapes, R. H., and Faulkner, C. J. 1993. Analysis of a Carboniferous embryonic ammonoid assemblage from Kansas, U.S.A.—Implications for ammonoid embryology. Lethaia, 26:215224.Google Scholar
Tanabe, K., Landman, N. H., and Yoshioka, Y. 2003. Intra-and interspecific variation in the early internal shell features of some Cretaceous ammonoids. Journal of Paleontology, 77:876887.Google Scholar
Tanabe, K. and Ohtsuka, Y. 1985. Ammonoid early internal shell structure: its bearing on early life history. Paleobiology, 11:310322.Google Scholar
Tanabe, K. and Tsukahara, J. 1987. Biometric analysis of Nautilus pompilius from the Philippines and the Fiji Islands, p. 105113. InSaunders, W. B. and Landman, N. H.(eds.), Nautilus. Plenum Press, New York.Google Scholar
Tanaka, K. 1963. A study on the Cretaceous sedimentation in Hokkaido, Japan. Report of the Geological Survey of Japan, 197:1122.Google Scholar
Taylor, B. E. and Ward, P. D. 1983. Stable isotope studies of Nautilus macromphalus Sowerby (New Caledonia) and Nautilus pompilius L. (Fiji). Palaeogeography, Palaeoclimatology, Palaeoecology, 41:116.Google Scholar
Toshimitsu, S. 1988. Biostratigraphy of the Upper Cretaceous Santonian Stage in northwestern Hokkaido. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, 26:125192.Google Scholar
Wani, R. 2003. Taphofacies models for Upper Cretaceous ammonoids from the Kotanbetsu area, northwestern Hokkaido, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 199:7182.Google Scholar
Wani, R. and Ayyasami, K. 2009. Ontogenetic change and intra-specific variation of shell morphology in the Cretaceous nautiloids (Cephalopoda, Mollusca) Eutrephoceras clementinum (d'Orbigny, 1840) from the Ariyalur area, southern India. Journal of Paleontology, 83:365378.Google Scholar
Wani, R. and Mapes, R. H. 2010. Conservative evolution in nautiloids shell morphology: Evidence from the Pennsylvanian nautiloid Metacoceras mcchesneyi from Ohio, U.S.A. Journal of Paleontology, 84:476491.Google Scholar
Westermann, G. E. G. 1958. The significance of septa and sutures in Jurassic ammonite systematics. Geological Magazine, 95:441455.Google Scholar
Westermann, G. E. G. 1996. Ammonoid life and habitat, p. 607707. InLandman, N. H., Tanabe, K., and Davis, R. A.(eds.), Ammonoid Paleobiology. Plenum Press, New York.Google Scholar
Wright, C. W. 1996. Treatise on Invertebrate Paleontology. Pt. L. Mollusca 4. Revised. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Yabe, H. 1903. Cretaceous Cephalopoda from the Hokkaido. Part 1. Journal of the College of Science, Imperial University of Tokyo, 18:155.Google Scholar
Yabe, H. 1910. Die Scaphiten aus der Oberkreide von Hokkaido. Beitrage zur Paläontologie und Geologie Österreich-Ungarns und des Orients, 23:159174.Google Scholar
Yokoyama, M. 1890. Versteinerungen aus der Japanischen Kreide. Palaeontolographica, 35:159202.Google Scholar