Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T18:26:10.307Z Has data issue: false hasContentIssue false

Unusual oak leaf galls from the middle Miocene of northwestern Nevada

Published online by Cambridge University Press:  20 May 2016

Benjamin M. Waggoner
Affiliation:
Department of Integrative Biology, University of California, Berkeley 94720
Mary F. Poteet
Affiliation:
Department of Integrative Biology, University of California, Berkeley 94720

Abstract

Distinctive galls have been found on a fossil oak leaf from the Miocene Gillam Springs Flora of Washoe County, Nevada. The described galls are located on the leaf surface of Quercus hannibali Dorf, an analogue of the modern species Q. chrysolepis Liebmann. Similar galls are found on extant Quercus, but the fossils seem distinctive enough to warrant description as Antronoides schorni new genus and species. The occurrence of Antronoides schorni coincides with a rapid episode of change from a mesic to a more xeric habitat, with a concomitant shift from an oak-dominated to a conifer-dominated paleoflora. Recent work suggests that speciation and radiation of galling insects is highest in xeric environments, possibly due to decreases in rates of parasitism and disease. This pattern has been documented for modern galling insects and fits the qualitative fossil evidence we present. These galls also support the hypothesis that cynipids in the Antron group originated in Nevada or eastern California and migrated from their point of origin to their current range in the Sierra Nevada and Coast Ranges.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, W. G., and McRea, K. D. 1986. The impact of galls and gall makers on plants. Proceedings of the Entomological Society of Washington, 88:364367.Google Scholar
Ach, J. A., and Swisher, C. C. III. 1990. The High Rock caldera complex; nested “failed” calderas in north-western Nevada. Transactions of the North American Geophysical Union, Eos 71(43):1614.Google Scholar
Ashmead, W. H. 1886. Synopsis of the North American sub-families and genera of Cynipidae. Transactions of the American Entomological Society, 13:5964.Google Scholar
Ashmead, W. H. 1899. Hymenoptera. Journal of the New York Entomological Society, 7(1):4560.Google Scholar
Ashmead, W. H. 1903. Classification of the gall-wasps and the parasitic cynipoids, of the superfamily Cynipoidea. III. Psyche, 10:140155.Google Scholar
Askew, R. R. 1984. The biology of gall wasps, p. 223272. In Ananthakrishnan, T. N. (ed.), Biology of Gall Insects. Edward Arnold, London.Google Scholar
Axelrod, D. I., and Schorn, H. E. 1994. The 15 Ma floristic crisis at Gillam Spring, Washoe County, northwestern Nevada. PaleoBios, 16(2):110.Google Scholar
Brooks, H. K. 1955. Healed wounds and galls on fossil leaves from the Wilcox deposits (Eocene) of western Tennessee. Psyche, 62(1):19.Google Scholar
Boucot, A. J. 1990. Evolutionary Paleobiology of Behavior and Coevolution. Elsevier, Amsterdam, 725 p.Google Scholar
Brues, C. T. 1910. The parasitic Hymenoptera of the Tertiary of Florissant, Colorado. Bulletin of the Museum of Comparative Zoology, 54:1125.Google Scholar
Burks, B. D. 1951. Cynipoidea. pp. 1045-1108. In Krombein, K. V., Hurd, P. D. Jr., Smith, D. R., and Burks, B. D. (eds.), Catalog of Hymenoptera in America North of Mexico. Volume 1: Symphyta and Apocrita (Parasitica). Smithsonian Institution, Washington, DC.Google Scholar
Carpenter, F. M., Folsom, J. W., Essig, E. O., Kinsey, A. C., Brues, C. T., Boesel, M. W., and Ewing, H. E. 1937. Insects and arachnids from Canadian amber. University of Toronto Studies Geological Series 40:762.Google Scholar
Cockerell, T. D. A. 1921. Fossil Arthropods in the British Museum. V. Oligocene Hymenoptera from the Isle of Wight. Annals and Magazine of Natural History, Ninth Series 7(37):125.Google Scholar
Felt, E. P. 1940. Plant Galls and Gall Makers. Comstock Publishing, Ithaca, New York, 364 p.Google Scholar
Fernandes, G. W. and Price, P. W. 1988. Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia, 76:161167.Google Scholar
Fernandes, G. W. 1991. Comparisons of tropical and temperate galling species richness: the roles of environmental harshness and plant nutrient status, p. 91115. In Price, P. W., Lewinsohn, T. M., Fernandes, G. W., and Bensor, W. W. (eds.), Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. Wiley, New York.Google Scholar
Fernandes, G. W. 1992. The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitats. Oecologia, 90:1420.Google Scholar
Fourcroy, M., and Braun, C. 1967. Observations sur la galle de l'Aulex glechomae L. sur Glechoma hederacea L. II. Histologie et rôle physiologique de la coque sclérifiée. Marcellia, 34:2330.Google Scholar
Grimaldi, D. A. 1995. The age of Dominican amber, p. 203217. In Anderson, K.B. and Crelling, J.C. (eds.), Amber, Resinite, and Fossil Resins. ACS Symposium Series No. 617, American Chemical Society, Washington, D.C.Google Scholar
Handlirsch, A. 1908. Die fossilen Insekten und die Phylogenie der rezenten Formen: ein Handbuch für Palaontologen und Zoologen. Volume 1. Wilhelm Engelmann, Leipizig, 672 p.Google Scholar
Harris, P. 1980. Effects of Urophora affinis Frfld. and U. quadrifasciata (Meig.) (Diptera: Tephritidae) on Centaurea diffusa Lam. and C. maculosa Lam. (Compositae). Zeitschrift für Angewandte Entomologie, 90:190201.Google Scholar
Hartnett, D. C., and Abrahamson, W. G. 1979. The effects of stem gall insects on life history patterns in Solidago canadensis. Ecology, 60:910917.Google Scholar
Hickey, L. J., and Doyle, J. A. 1977. Early Cretaceous fossil evidence for angiosperm evolution. Botanical Review, 43:3104.CrossRefGoogle Scholar
Houtman, G. 1986. Gallen op plantenfossielen. Grondboor en Hamer, 40(1):1819.Google Scholar
Jankiewicz, L. S., Plich, H., and Antoszewski, R. 1969. Preliminary studies on the translocation of C14-labelled assimilates and 32PO4-3 towards the gall evoked by Cynips (Diplolepis) quercusfolii L. on oak leaves. Marcellia, 36:163174.Google Scholar
Johnson, W. T., and Lyon, H. H. 1991. Insects that Feed on Trees and Shrubs, 2nd edition, revised. Comstock Publishing, Ithaca, New York, 556 p.Google Scholar
Kinsey, A. C. 1919. Fossil Cynipidae. Psyche, 26:4449.CrossRefGoogle Scholar
Kinsey, A. C. 1930. The gall wasp genus Cynips: a study in the origin of species. Indiana University Studies, 16(84-86):1577.Google Scholar
Labandeira, C. C., and Sepkoski, J. J. Jr. 1993. Insect diversity in the fossil record. Science, 261(5119):310315.CrossRefGoogle ScholarPubMed
Larew, H. G. 1986. The fossil gall record: a brief summary. Proceedings of the Entomological Society of Washington, 88:385388.Google Scholar
Larew, H. G. 1992. Fossil galls, p. 5059. In: Shorthouse, J. D. and Rohfritsch, O. (eds.) Biology of Insect-Induced Galls. Oxford University Press, New York.Google Scholar
Larsson, S. 1978. Baltic amber—a paleoecological study. Entomonograph 1, Scandinavian Science Press, Klampenborg, Denmark. 192 p.Google Scholar
Linnaeus, C. 1758. Systema Naturae (tenth edition). Laurentii Salvii, Holmiae, 824 p.Google Scholar
Poinar, G. O. Jr. 1992. Life in Amber. Stanford University Press, Stanford, California, 350 p.Google Scholar
Price, P. W., Waring, G. L., and Fernandes, G. W. 1986. Hypotheses on the adaptive nature of galls. Proceedings of the Entomological Society of Washington, 88:361363.Google Scholar
Price, P. W., Fernandes, G. W., and Waring, G. L. 1987. Adaptive nature of insect galls. Environmental Entomology, 16:1524.CrossRefGoogle Scholar
Ronquist, F. 1994. Evolution of parasitism among closely related species: phylogenetic relationships and the origin of inquilinism in gall wasps (Hymenoptera, Cynipidae). Evolution, 48:241266.Google Scholar
Scudder, S. H. 1886. Systematic review of our present knowledge of fossil insects, including Myriapods and Arachnids. Bulletin of the United States Geological Survey, 31, 128 p.Google Scholar
Scott, A. C., Stephenson, J., and Collinson, M. E. 1994. The fossil record of leaves with galls, p. 447470. In: Williams, M. A. J. (ed.) Plant Galls. Clarendon Press, Oxford.CrossRefGoogle Scholar
Stinner, B. R., and Abrahamson, W. G. 1979. Energetics of the Solidago canadensis-stem gall insect-parasitoid guild interaction. Ecology, 60:918926.Google Scholar
Straus, A. 1977. Gallen, Minen und andere Fraßspuren im Pliozän von Willershausen am Harz. Verhandlungen des Botanischen Vereins der Provinz Brandenburg, 113:4380.Google Scholar
Weld, L. H. 1957. Cynipid Galls of the Pacific Slope; An Aid to Their Identification. Privately printed, Ann Arbor, Michigan, 82 p.Google Scholar
Westwood, J. O. 1840. An introduction to the modern classification of insects; founded on the natural habits and corresponding organisation of the different families, vol. II. Longman, Orme, Brown, Green and Longmans, London, 587 p.Google Scholar