Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T06:40:41.904Z Has data issue: false hasContentIssue false

Unraveling the three-dimensional morphology of Archean microbialites

Published online by Cambridge University Press:  14 July 2015

Marisol Juarez Rivera
Affiliation:
Department of Earth and Planetary Sciences, 1 Shields Avenue, University of California, Davis, CA 95616 USA, and
Dawn Y. Sumner
Affiliation:
Department of Earth and Planetary Sciences, 1 Shields Avenue, University of California, Davis, CA 95616 USA, and

Abstract

Fenestrate microbialites from the 2521±3 Ma Gamohaan Formation, South Africa, are composed of calcite with traces of kerogen that represent the remains of ancient microbial mats. To delineate the 3-D geometry of these microbialites, specimens were serial-sectioned; sequential slices were polished in 120 μm increments and scanned to yield an image stack, which was rendered into a virtual model of the microbialites. The resulting virtual representation allowed for visualization and characterization of microbial growth geometries that were not visible from 2-D surfaces. Several new insights into the structure of microbialites emerged from characterizing their 3-D structure including the recognition of two new features, linear structures and tubular structures. The long, thin nature of these structures makes them difficult to identify in two dimensions. However, in three dimensions, they can be traced as thin ropes of fossilized microbial communities emerging from more typical microbial mat structures. Overall, these results demonstrate a new set of microbial features in the Gamohaan Formation that were only characterized by reconstructing the full geometry of the microbialites in three dimensions.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P., and Burch, I. W. 2006. Stromatolite reef from the early Archaean era of Australia. Nature, 441:714718.CrossRefGoogle ScholarPubMed
Batchelor, M., Burne, R., Henry, B., and Watt, S. 2003. Mathematical and image analysis of stromatolite morphogenesis. Mathematical Geology, 35:789803.CrossRefGoogle Scholar
Bertrand-Sarfati, J. and Moussine-Pouchkine, A. 1985. Evolution and environmental conditions of Conophytonjacutophyton associations in the Atar dolomite (upper proterozoic, Mauritania). Precambrian Research, 29:207234.CrossRefGoogle Scholar
Billen, M. I., Kreylos, O., Hamann, B., Jadamec, M. A., Kellogg, L. H., Staadt, O., and Sumner, D. Y. 2008. A geoscience perspective on immersive 3D gridded data visualization. Computers and Geoscience 34:10561072.CrossRefGoogle Scholar
Burne, R. V. and Moore, L. S. 1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios, 2:241254.CrossRefGoogle Scholar
Clarke, J. A., Tambussi, C. P., Noriega, J. I., Erickson, G. M., and Ketcham, R. A. 2005. Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature, 433:305308.CrossRefGoogle ScholarPubMed
Gebelein, C. D. 1974. Biologic control of stromatolite microstructure: implications for Precambrian time stratigraphy. American Journal of Science, 247:575598.CrossRefGoogle Scholar
Glaessner, M. F., Preiss, W. V., and Walter, M. R. 1969. Precambrian columnar stromatolites in Australia: morphological and stratigraphic analysis. Science, 164:10561058.CrossRefGoogle ScholarPubMed
Grotzinger, J. P. and Knoll, A. H. 1999. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Reviews of Earth Planet Sciences, 27:313358.CrossRefGoogle ScholarPubMed
Grotzinger, J. P. and Rothman, D. H. 1996. An abiotic model for stromatolite morphogenesis. Nature, 383:423425.CrossRefGoogle Scholar
Grotzinger, J. P., Watters, W. A., and Knoll, A. H. 2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26:334359.2.0.CO;2>CrossRefGoogle Scholar
Harwood, C. L. and Sumner, D. Y. 2012. Origins of microfabrics in the Neoproterozoic Beck Spring Dolomite: influences of microbial communities and variations in lithification. Journal of Sedimentary Research, 82:709722.CrossRefGoogle Scholar
Hofmann, H. J., Grey, K., Hickman, A. H., and Thorpe, R. I. 1999. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. GSA Bulletin, 111:12561262.2.3.CO;2>CrossRefGoogle Scholar
Howell, J., Woo, J., and Chough, S. K. 2011. Dendroid morphology and growth patterns: 3-D computed tomographic reconstruction. Palaeogeography, Palaeoclimatology, and Palaeoecology, 299:335347.CrossRefGoogle Scholar
Kah, L. C., Bartley, J. K., and Stagner, A. F. 2009. Reinterpreting a Proterozoic Enigma: ConophytonJacutophyton stromatolites of the Mesoproterozoic Atar Group, Mauritania. InSwart, P. K., Eberli, G. P., McKenzie, J. A., Jarvis, I. and Stevens, T.(eds.), Perspectives in Carbonate Geology: A Tribute to the Career of Robert Nathan Ginsburg. John Wiley and Sons, Ltd., Chichester, West Sussex, U.K.Google Scholar
Knoll., A. H., and Semikhatov, M. A. 1998. The genesis and time distribution of two distinctive Proterozoic stromatolite microstructures. Palaios, 13:408422.CrossRefGoogle Scholar
Kreylos, O. 2008. Environment-independent VR development, p. 901–912. InBebis, G.(ed.), Advances in Visual Computing. Spring-Verlag, Berlin.Google Scholar
Lowe, D. R. 1994. Abiological origin of described stromatolites older than 3.2 Ga. Geology, 22:387390.2.3.CO;2>CrossRefGoogle ScholarPubMed
Maloof, A. C., Rose, C. V., Beach, R., Samuels, B. M., Calmet, C. C., Erwin, D. H., Poirier, G. R., Yao, N., and Simons, F. J. 2010. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nature Geoscience, 3:653659.CrossRefGoogle Scholar
McLoughlin, N., Wilson, L. A., and Brasier, M. D. 2008. Growth of synthetic stromatolites and wrinkle structures in the absence of microbes implications for the early fossil record. Geobiology 6:95105.CrossRefGoogle ScholarPubMed
Preiss, W. V. 1976. Basic field and laboratory methods for the study of stromatolites, p. 513. InWalter, M. R.(ed.), Stromatolites, Developments in Sedimentology, Vol. 20. Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
Riding, R. 2011. Microbialites, stromatolites and thrombolites, p. 635654. InReitner, J. and Thiel, V.(eds.), Encyclopedia of Geobiology, Encyclopedia of Earth Sciences. Springer, Heidelberg.CrossRefGoogle Scholar
Semikhatov, M. A., Gebelein, C. D., Cloud, P., Awramik, S. M., and Benmore, W. C. 1979. Stromatolite morphogenesis progress and problems. Canadian Journal of Earth Sciences, 16:9921015.CrossRefGoogle Scholar
Stevens, E. W., Sumner, D. Y., Harwood, C. L., Crutchfield, J. P., Hamann, B., Kreylos, O., Puckett, E., and Senge, P. 2011. Understanding microbialite morphology using a comprehensive suite of three dimensional analysis tools. Astrobiology, 11:509518.CrossRefGoogle ScholarPubMed
Sumner, D. Y. 1997a. Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco formations, Transvaal Supergroup, South Africa. American Journal of Science, 297:455487.CrossRefGoogle Scholar
Sumner, D. Y. 1997b. Late Archean calcite-microbe interactions: two morphologically distinct microbial communities that affected calcite nucleation differently. Palaios, 12:302318.CrossRefGoogle Scholar
Sumner, D. Y. 2001. Microbial influences on local carbon isotopic ratios and their preservation in carbonate. Astrobiology, 1:5770.CrossRefGoogle ScholarPubMed
Sumner, D. Y. and Bowring, S. A. 1996. U-Pb geochronologic constraints on deposition of the Campbellrand Subgroup, Transvaal Supergroup, South Africa. Precambrian Research, 79:2535.CrossRefGoogle Scholar
Sumner, D. Y. and Grotzinger, J. P. 1996. Herringbone calcite; petrography and environmental significance. Journal of Sedimentary Research, 66:419429.Google Scholar
Waldbauer, J. R., Sherman, L. S., Sumner, D. Y., and Summons, R. E. 2009. Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Research, 169:2847.CrossRefGoogle Scholar
Walter, M. R. 1972. Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian. Special Paper 11, Palaeontological Association of London, London.Google Scholar
Watters, W. A. and Grotzinger, J. P. 2001. Digital reconstruction of calcified early metazoans, terminal Proterozoic Nama Group, Namibia. Paleobiology 27:159171.2.0.CO;2>CrossRefGoogle Scholar