Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T04:37:07.882Z Has data issue: false hasContentIssue false

Trilobite malformations and the fossil record of behavioral asymmetry

Published online by Cambridge University Press:  20 May 2016

Loren E. Babcock*
Affiliation:
Department of Geological Sciences, The Ohio State University, 155 South Oval Mall, Columbus 43210

Abstract

Malformations of trilobites are classified as healed injuries, teratological conditions, and pathological conditions. An improved method of recognizing such malformations combines information about the conditions under which cell injury can occur, the processes by which animal tissues react to injury, and trilobite morphology.

Study of healed injuries of polymeroid trilobites shows that injuries attributed to sublethal predation tend to be most commonly preserved on the pleural lobes, the posterior half of the body, and the right side. Statistically significant differences in the number of predation scars between the right and left sides is interpreted as evidence of right-left behavioral asymmetry in some predators of trilobites or the trilobites themselves. Asymmetrical, or lateralized, behavior in present-day animals is one manifestation of handedness, and is usually related to a functional lateralization of the nervous system. Evidence of behavioral lateralization in some Paleozoic predators or prey suggests that those organisms also possessed lateralized nervous systems. Right-left differences in preserved predation scars on trilobites date from the Early Cambrian (Olenellus Zone), and are the oldest known evidence of behavioral asymmetry in the fossil record.

Other examples of structural or behavioral asymmetry from the fossil record of animals are cited. Lateralization is recognized in representatives of the Arthropoda, Annelida, Bryozoa, Echinodermata, Cnidaria, Mollusca, Chordata, and Conodonta, and in trace fossils.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpert, S. P., and Moore, J. N. 1975. Lower Cambrian trace fossil evidence for predation on trilobites. Lethaia, 8:223230.Google Scholar
Annett, M. 1972. The distribution of manual asymmetry. British Journal of Psychology, 63:343358.CrossRefGoogle ScholarPubMed
Annett, M. 1978. A Single Gene Explanation of Right and Left Handedness and Brainedness. Lanchester Polytechnic, Coventry, England, 20 p.Google Scholar
Annett, M. 1987. Handedness as chance or as species characteristic. Behavioral and Brain Sciences, 10:263264.CrossRefGoogle Scholar
Ausich, W. I. 1993. Echinodermata. In Feldmann, R. M. (ed.), Fossils of Ohio. Ohio Division of Geological Survey, Bulletin 70.Google Scholar
Babcock, L. E. 1990a. Biogeography, phylogenetics, and systematics of some Middle Cambrian polymeroid trilobites from open-shelf to basinal lithofacies of North Greenland and Nevada. Unpubl. Ph.D. dissertation, University of Kansas, Lawrence, 222 p.Google Scholar
Babcock, L. E. 1990b. Phylogenetic relationships among Cambrian trilobites. Geological Society of America, Abstracts with Programs, 22(7):A265.Google Scholar
Babcock, L. E. 1993. Cnidaria. In Feldmann, R. M. (ed.), Fossils of Ohio. Ohio Division of Geological Survey, Bulletin 70.Google Scholar
Babcock, L. E., and Robison, R. A. 1989a. Preferences of Palaeozoic predators. Nature, 337:695696.Google Scholar
Babcock, L. E., and Robison, R. A. 1989b. Asymmetry of predation on trilobites. 28th International Geological Congress, Abstracts, 1:66.Google Scholar
Bassler, R. S. 1953. Bryozoa. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part G. Geological Society of America and University of Kansas Press, Lawrence, 253 p.Google Scholar
Bell, B. M. 1976. A study of North American Edrioasteroidea. New York State Museum and Science Service, Memoir 21, 447 p.Google Scholar
de Castro, Bermúdez J., Bromage, T. G., and Férnandez Jalvo, Y. 1988. Buccal striations on fossil human anterior teeth: evidence of handedness in the middle and early Upper Pleistocene. Journal of Human Evolution, 17:403412.CrossRefGoogle Scholar
Boucot, A. J. 1990. Evolutionary Paleobiology of Behavior and Co-evolution. Elsevier Science Publishers, Amsterdam, 725 p.Google Scholar
Bradshaw, J. L. 1988. The evolution of human lateral asymmetries: new evidence and second thoughts. Journal of Human Evolution, 17:615637.CrossRefGoogle Scholar
Bradshaw, J. L. 1989. Hemispheric Specialization and Psychological Function. John Wiley & Sons, Chichester, England, 218 p.Google Scholar
Bradshaw, J. L. 1991. Animal asymmetry and human heredity: dextrality, tool use and language in evolution—10 years after Walker (1980). British Journal of Psychology, 82:3959.Google Scholar
Briggs, D. E. G., and Collins, D. 1988. A Middle Cambrian chelicerate from Mount Stephen, British Columbia. Palaeontology, 31:779798.Google Scholar
Briggs, D. E. G., and Mount, J. D. 1982. The occurrence of the giant arthropod Anomalocaris in the Lower Cambrian of southern California, and the overall distribution of the genus. Journal of Paleontology, 56:11121118.Google Scholar
Briggs, D. E. G., and Robison, R. A. 1984. Exceptionally preserved nontrilobite arthropods and Anomalocaris from the Middle Cambrian of Utah. University of Kansas Paleontological Contributions, Paper 111, 23 p.Google Scholar
Briggs, D. E. G., and Whittington, H. B. 1985a. Modes of life of arthropods from the Burgess Shale, British Columbia. Transactions of the Royal Society of Edinburgh, 76:149160.Google Scholar
Briggs, D. E. G., and Whittington, H. B. 1985b. Terror of the trilobites. Natural History, 94(12):3439.Google Scholar
Broca, P. 1861. Nouvelle observation d'aphemie produite par une lesion de la moite posterieure des deuxieme et troisieme circonvolutions frontales. Bulletin de la Societé Anatomique de Paris, 36:398407.Google Scholar
Bruton, D. L. 1981. The arthropod Sidneyia inexpectans, Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B, 300:619656.Google Scholar
Bryden, M. P. 1982. Laterality: Functional Asymmetry in the Intact Brain. Academic Press, New York, 319 p.Google Scholar
Campbell, L. D. 1969. Stratigraphy and paleontology of the Kinzers Formation, southeastern Pennsylvania. Unpubl. , Franklin and Marshall College, Lancaster, Pennsylvania, 51 p.Google Scholar
Chapple, W. D. 1977. Role of asymmetry in the functioning of invertebrate nervous systems, p. 322. In Harnad, S., Doty, R. W., Goldstein, L., Jaynes, J., and Krauthamer, G. (eds.), Lateralization in the Nervous System. Acadenic Press, New York.Google Scholar
Cisne, J. L. 1975. Anatomy of Triarthrus and the relationships of the Trilobita. Fossils and Strata, 4:4563.CrossRefGoogle Scholar
Coakley, M. E., and Brown, N. A. 1986. Tissue oxygen as a determinant of axially asymmetric teratologic responses: misonidazole as a marker for hypoxic cells. Human Toxicology, 5:404.Google Scholar
Conway Morris, S. 1981. Parasites and the fossil record. Parasitology, 82:489509.Google Scholar
Conway Morris, S., and Jenkins, R. J. F. 1985. Healed injuries in Early Cambrian trilobites from South Australia. Alcheringa, 9:167177.Google Scholar
Conway Morris, S., and Robison, R. A. 1982. The enigmatic medusoid Peytoia and a comparison of some Cambrian biotas. Journal of Paleontology, 56:116122.Google Scholar
Conway Morris, S., and Robison, R. A. 1988. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. University of Kansas Paleontological Contributions, Paper 122, 48 p.Google Scholar
Corballis, M. C., and Morgan, M. J. 1978. On the biological basis of human laterality: I. Evidence for a maturational left-right gradient. Behavioral and Brain Sciences, 2:261336.CrossRefGoogle Scholar
Coren, S., and Porac, C. 1977. Fifty centuries of right-handedness: the historical record. Science, 198:631632.Google Scholar
Coren, S., and Porac, C. 1980. Birth factors and laterality: effects of birth order, parental age, and birth stress on four indices of lateral preference. Behavior Genetics, 10:123138.Google Scholar
Dart, R. A. 1949. The predatory implemental technique of Australopithecus . American Journal of Physical Anthropology, 7:138.Google Scholar
Dax, M. 1865. Lésions de la moitié gauche de l'encéphale coincident avec l'oubli des signes de la pensée. Gazette Bebdom, 11:259260.Google Scholar
Denenberg, V. H. 1981. Hemispheric laterality in animals and the effects of early experience. Behavioral and Brain Sciences, 4:149.Google Scholar
Denenberg, V. H. 1983. Brain laterality and behavioral asymmetry in the rat, p. 2938. In Flor-Henry, P. and Gruzelier, J. (eds.), Laterality and Psychopathology. Elsevier Science Publishers, Amsterdam.Google Scholar
Dimond, S. J. 1977. Evolution and lateralization of the brain: concluding remarks. Annals of the New York Academy of Sciences, 299:477501.CrossRefGoogle ScholarPubMed
Durham, J. W., and Caster, K. E. 1963. Helioplacoidea: a new class of echinoderms. Science, 140:820822.Google Scholar
Durham, J. W., and Caster, K. E. 1966. Helioplacoids, p. U131U136. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part U, Echinodermata 3. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Eaton, R. C., Bombardieri, R. A., and Meyer, D. L. 1977. The Mauthner-initiated startle response in teleost fish. Journal of Experimental Biology, 66:6581.Google Scholar
Favre, D., Thwaite, J. J., and Mendelson, N. H. 1985. Kinetic studies of temperature-induced helix hand inversion in Bacillus subtilis macrofibers. Journal of Bacteriology, 164:11361140.Google Scholar
Galaburda, A. M., Lemay, M., Kemper, T. L., and Geschwind, N. 1978. Right-left asymmetries in the brain. Science, 199:852856.Google Scholar
Galloway, J. 1987. A cause for reflection? Nature, 330:204205.Google Scholar
Galloway, J. 1989. Ciliate through the looking glass. Nature, 340:1617.Google Scholar
Gazzaniga, M. S. 1989. Organization of the human brain. Science, 245:947952.Google Scholar
Geschwind, N. 1979. Specializations of the human brain. Scientific American, 241(3):180199.Google Scholar
Geschwind, N., and Galaburda, A. M. 1985. Cerebral lateralization: biological mechanisms, associations and pathology. Archives of Neurology, 42:428459.Google Scholar
Glaessner, M. F. 1969. Decapoda, p. R399R533. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part R, Arthropoda 4. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Glezer, I. I. 1987. The riddle of Carlyle: the unsolved problem of the origin of handedness. Behavioral and Brain Sciences, 10:273275.Google Scholar
Gould, S. J., Young, N. D., and Kasson, B. 1985. The consequences of being different: sinistral coiling in Cerion . Evolution, 39:13641379.Google Scholar
Govind, C. K. 1989. Asymmetry in lobster claws. American Scientist, 77:468474.Google Scholar
Grimes, G. W. 1982. Pattern differentiation in hypotrich ciliates. American Zoologist, 22:3546.Google Scholar
Häntzschel, W. 1975. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Part W, Miscellanea, Supplement 1, Trace Fossils and Problematica, 2nd ed. Geological Society of America and University of Kansas Press, Lawrence, 269 p.Google Scholar
Harlow, H. F., and Harlow, M. K. 1962. Social deprivation in monkeys. Scientific American, 207(5):136146.Google Scholar
Hegstrom, R. A., and Kondepudi, D. K. 1990. The handedness of the universe. Scientific American, 262(1):108115.Google Scholar
Hepper, P. G., Shahidullah, S., and White, R. 1990. Origins of fetal handedness. Nature, 347:431.Google Scholar
Holloway, R. L. 1981a. Volumetric and asymmetry determinations on recent hominid endocasts: Spy I and II, Djebel Ihroud I, and the Sale Homo erectus specimens, with some notes on neanderthal brain size. American Journal of Physical Anthropology, 55:385393.Google Scholar
Holloway, R. L. 1981b. The Indonesian Homo erectus brain endocasts revisited. American Journal of Physical Anthropology, 55:503521.Google Scholar
Holloway, R. L., and de la Coste-Lareymondie, M. C. 1982. Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance. American Journal of Physical Anthropology, 58:101110.Google Scholar
Jago, J. B. 1974. Evidence for scavengers from Middle Cambrian sediments in Tasmania. Neues Jahrbuch für Geologie und Paläontologie, Monatschefte, 1974:1317.Google Scholar
Jefferies, R. P. S. 1967. Some fossil chordates with echinoderm affinities. Symposium of the Zoological Society of London, 20:163–108.Google Scholar
Jefferies, R. P. S. 1986. The Ancestry of the Vertebrates. British Museum (Natural History), London, 376 p.Google Scholar
Jefferies, R. P. S., and Lewis, D. N. 1978. The English Silurian fossil Placocystites forbesianus and the ancestry of the vertebrates. Philosophical Transactions of the Royal Society of London B, 292:205323.Google Scholar
Jell, P. A. 1990. Some aberrant exoskeletons from fossil and living arthropods. Memoirs of the Queensland Museum, 27:491498.Google Scholar
Johanson, D. C., and Edey, M. A. 1981. Lucy: The Beginnings of Humankind. Simon and Schuster, New York, 409 p.Google Scholar
Johnson, M. S. 1982. Polymorphism for direction of coil in Partula suturalis: behavioural isolation and positive frequency dependent selection. Heredity, 49:145151.Google Scholar
Johnson, M. S. 1987. Adaptation and rules of form: chirality and shape in Partula suturalis . Evolution, 41:672675.CrossRefGoogle ScholarPubMed
Keeley, L. H. 1977. The functions of Paleolithic flint tools. Scientific American, 237(5):108126.Google Scholar
Kimura, D. 1979. Neuromotor mechanisms in the evolution of human communication, p. 197219. In Steklis, H. D. and Raleigh, M. J. (eds.), Neurobiology of Social Communication in Primates: An Evolutionary Perspective. Academic Press, New York.Google Scholar
Kurtén, B., and Anderson, E. 1980. Pleistocene Mammals of North America. Columbia University Press, New York, 443 p.Google Scholar
Kuzmin, A. V. 1990. Asymmetrical pairs of platform elements of Polygnathus (conodonts). Paleontological Journal, 24:6270.Google Scholar
Lane, N. G. 1978. Family Platycrinitidae, p. T515T516. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Lenneberg, E. H. 1967. Biological Foundations of Language. Wiley, New York, 489 p.Google Scholar
Levy, J. 1972. Lateral specialization of the human brain: behavioral manifestations and possible evolutionary basis, p. 159180. In Kiger, J. A. (ed.), The Biology of Behavior. Oregon State University Press, Corvallis.Google Scholar
Levy, J., and Nagylaki, T. 1972. A model for the genetics of handedness. Genetics, 72:117128.Google Scholar
Lorenz, K. 1970. Studies in Animal and Human Behaviour (translated by Martin, R.). Harvard University Press, Cambridge, Vol. I, 403 p., Vol. II, 366 p.Google Scholar
Ludvigsen, R. 1977. Rapid repair of traumatic injury by an Ordovician trilobite. Lethaia, 10:205207.Google Scholar
Ludvigsen, R. 1979. Fossils of Ontario. Part 1: The Trilobites. Royal Ontario Museum, Life Sciences Miscellaneous Publications, 96 p.Google Scholar
MacNeilage, P. F., Studdert-Kennedy, M. G., and Lindblom, B. 1987. Primate handedness reconsidered. Behavioral and Brain Sciences, 10:247303.Google Scholar
MacNeilage, P. F., Studdert-Kennedy, M. G., and Lindblom, B. 1991. Primate handedness: the other theory, the other hand and the other attitude. Behavioral and Brain Sciences, 14:344349.Google Scholar
Maitland, D. P. 1989. Trilobite attacks. Nature, 339:105106.Google Scholar
Martin, L. D., and Bennett, D. K. 1977. The burrows of the Miocene beaver Palaeocastor, western Nebraska, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 22:173193.Google Scholar
Meischner, D. 1968. Perniciöse Epökie von Placunopsis auf Ceratites . Lethaia, 1:156174.Google Scholar
Michel, G. F. 1981. Right-handedness: a consequence of infant supine head-orientation preference? Science, 212:685687.Google Scholar
Moore, R. C., Lane, N. G., Strimple, H. L., and Sprinkle, J. 1978. Order Disparida, p. T520T564. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Morgan, M. 1977. Embryology and inheritance of asymmetry, p. 173194. In Harnad, S., Doty, R. W., Goldstein, L., Jaynes, J., and Krauthamer, G. (eds.), Lateralization in the Nervous System. Academic Press, New York.Google Scholar
Moy-Thomas, J. A., and Miles, R. S. 1971. Paleozoic Fishes. W. B. Saunders, Philadelphia, 259 p.CrossRefGoogle Scholar
Müller, K. J., and Walossek, D. 1987. Morphology, ontogeny, and life habit of Agnostus pisiformis from the Upper Cambrian of Sweden. Fossils and Strata, 19, 124 p.Google Scholar
Needham, A. E. 1952. Regeneration and Wound-Healing. Methuen, London, 152 p.Google Scholar
Nelson, E. M., and Frankel, J. 1989. Maintenance and regulation of cellular handedness in Tetrahymena . Development, 105:457471.Google Scholar
Nelson, E. M., Frankel, J., and Jenkins, L. M. 1989. Non-genic inheritance of cellular handedness. Development, 105:447456.Google Scholar
Neville, A. C. 1976. Animal Asymmetry. The Institute of Biology's Studies in Biology No. 67. Edward Arnold, London, 60 p.Google Scholar
Norberg, R. Å. 1977. Occurrence and independent evolution of bilateral ear asymmetry in owls and implications on owl taxonomy. Philosophical Transactions of the Royal Society of London B, 280:375408.Google Scholar
Nottebohm, F. 1979. Origins and mechanisms in the establishment of cerebral dominance, p. 295344. In Gazzaniga, M. S. (ed.), Handbook of Behavioral Neurobiology, Vol. 2, Neuropsychology. Plenum Press, New York.Google Scholar
Owen, A. W. 1983. Abnormal cephalic fringes in the Trinucleidae and Harpetidae (Trilobita). Special Papers in Paleontology, 30:241247.Google Scholar
Owen, A. W. 1985. Trilobite abnormalities. Transactions of the Royal Society of Edinburgh, 76:255272.CrossRefGoogle Scholar
Pek, I. 1977. Agnostid trilobites of the central Bohemian Ordovician. Sborník geologických věd, 19:744.Google Scholar
Purtilo, D. T. 1978. A Survey of Human Diseases. Addison-Wesley, Menlo Park, California, 453 p.Google Scholar
Regnéll, G. 1966. Edrioasteroids, p. U136U173. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part U, Echinodermata 3. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Reist, J. D., Bodaly, R. A., Fudge, R. J. P., Cash, K. J., and Stevens, T. V. 1987. External scarring of whitefish, Coregonus nasus and C. clupeaformis complex, from the western Northwest Territories, Canada. Canadian Journal of Zoology, 65:12301239.Google Scholar
Resser, C. E., and Howell, B. F. 1938. Lower Cambrian Olenellus Zone of the Appalachians. Geological Society of America Bulletin, 49:195248.Google Scholar
Riddle, S. W. 1989. Functional morphology and paleoecological implications of the platycrinitid column (Echinodermata, Crinoidea). Journal of Paleontology, 63:889897.Google Scholar
Robison, R. A. 1976. Middle Cambrian trilobite biostratigraphy of the Great Basin. Brigham Young University Geology Studies, 23(2):93109.Google Scholar
Robison, R. A. 1984. New occurrences of the unusual trilobite Naraoia from the Cambrian of Idaho and Utah. University of Kansas Paleontological Contributions, Paper 111, 8 p.Google Scholar
Robison, R. A. 1987a. Annelida, p. 194204. In Boardman, R. S., Cheetham, A. H., and Rowell, A. J. (eds.), Fossil Invertebrates. Blackwell Scientific Publications, Palo Alto, California.Google Scholar
Robison, R. A. 1987b. Superclass Trilobitomorpha, p. 221241. In Boardman, R. S., Cheetham, A. H., and Rowell, A. J. (eds.), Fossil Invertebrates. Blackwell Scientific Publications, Palo Alto, California.Google Scholar
Robison, R. A. 1991. Middle Cambrian biotic diversity: examples from four Utah Lagerstätten, p. 7793. In Simonetta, A. M. and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Fossils. Cambridge University Press, Cambridge.Google Scholar
Rudkin, D. M. 1979. Healed injuries in Ogygopsis klotzi (Trilobita) from the Middle Cambrian of British Columbia. Royal Ontario Museum, Life Sciences Occasional Paper 32, 8 p.Google Scholar
Searleman, A. C., Porac, C., and Coren, S. 1989. The relationship between birth order, birth stress, handedness and lateral preference: a critical review. Psychological Bulletin, 103:397408.Google Scholar
Signor, P. W. III, and Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology, 10:229245.CrossRefGoogle Scholar
Šnajdr, M. 1979. Two trinucleid trilobites with repair of traumatic injury. Věstník Ústředního ústavu geologického, 54:4951.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry, 2nd ed. W. H. Freeman, New York, 859 p.Google Scholar
Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Museum of Comparative Zoology, Harvard University, Special Publications, 283 p.Google Scholar
Sprinkle, J. 1987. Phylum Echinodermata, Part I, phylum overview, p. 550572. In Boardman, R. S., Cheetham, A. H., and Rowell, A. J. (eds.), Fossil Invertebrates. Blackwell Scientific Publications, Palo Alto, California.Google Scholar
Stigler, S. 1989. Trilobite attacks. Nature, 339:106.Google Scholar
Stürmer, W., and Bergström, J. 1973. New discoveries on trilobites by x-rays. Paläontologische Zeitschrift, 47:104141.Google Scholar
Sturtevant, A. H. 1923. Inheritance of direction of coiling in Limnaea . Science, 58:269270.Google Scholar
Sweet, W. C. 1988. The Conodonta: Morphology, Taxonomy, Paleoecology and Evolutionary History of a Long-extinct Animal Phylum. Oxford Monographs on Geology and Geophysics 10, 212 p.Google Scholar
Toth, N. 1985. Archaeological evidence for preferential right-handedness in the Lower and Middle Pleistocene, and its possible implications. Journal of Human Evolution, 14:607614.Google Scholar
Ubaghs, G. 1968 [dated 1967]. Stylophora, p. S495S565. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part S, Echinodermata 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Vermeij, G. J. 1975. Evolution and distribution of left-handed and planispiral coiling in snails. Nature, 254:419420.Google Scholar
Vorwald, G. R. 1982. Healed injuries in trilobites—evidence for a large Cambrian predator. Geological Society of America, Abstracts with Programs, 14:639.Google Scholar
Walker, S. F. 1980. Lateralization of functions in the vertebrate brain: a review. British Journal of Psychology, 71:329367.Google Scholar
Warren, J. M. 1980. Handedness and laterality in humans and other animals. Physiological Psychology, 8:351359.CrossRefGoogle Scholar
Webb, P. W. 1975. Acceleration performance of rainbow trout Salmo gairneri and green sunfish Lepomis cyanellus . Journal of Experimental Biology, 63:451465.Google Scholar
Whittington, H. B. 1977. The Middle Cambrian trilobite Naraoia, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B, 280:409443.Google Scholar
Whittington, H. B., and Briggs, D. E. G. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B, 309:569609.Google Scholar
Witelson, S. F., and Pallie, W. 1973. Left hemisphere specialization for language in the newborn: neuroanatomical evidence of asymmetry. Brain, 96:641646.Google Scholar