Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T09:09:34.244Z Has data issue: false hasContentIssue false

Torridorefugium eskridgensis (new ichnogenus and ichnospecies): Amphibian aestivation burrows from the lower Permian Speiser Shale of Kansas

Published online by Cambridge University Press:  20 May 2016

Daniel I. Hembree
Affiliation:
Department of Geology, University of Kansas, Lawrence 66045–7613,
Stephen T. Hasiotis
Affiliation:
Department of Geology, University of Kansas, Lawrence 66045–7613, University of Kansas Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence 66045
Larry D. Martin
Affiliation:
University of Kansas Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence 66045

Abstract

Burrows of the lysorophid amphibian Brachydectes elongatus occur in deposits interpreted as ephemeral ponds within the Lower Permian Speiser Shale of eastern Kansas. The burrows of B. elongatus have been previously recorded in the Lower Permian strata of Texas, Oklahoma, and Kansas, but have not been described in detail and an ichnotaxonomic designation has not been provided. Torridorefugium eskridgensis new ichnogenus and ichnospecies show two types of burrow architecture distinguished by width-to-length ratios. Type I burrows are elongate, elliptical tubes 4–32 cm long and 2–7 cm wide. Type II burrows are short, elliptical tubes 1.5–3.5 cm long and 2.5–5 cm wide. Both Type I and II burrows may contain coiled skeletons of B. elongatus. Torridorefugium eskridgensis occur in clusters of up to 45 burrows with maximum concentrations of 20/m2.

The type specimens of Torridorefugium eskridgensis occur in a 40–cm-thick lens of calcareous mudstone that fills a 100–m-long paleodepression within a well-developed paleosol. The burrow clusters are capped by surfaces with evidence of subaerial exposure, and overlain by nonburrowed, massive mudstone containing the fossils of the charophyte Stomachara, the ostracodes Carbonita and Paraparchites, fish, amphibians, and reptiles. This succession suggests that lysorophids burrowed in response to episodic, perhaps seasonal, droughts on the Permian midcontinental coastal plain. Permian lysorophid burrowing behavior is analogous to that of the extant aestivating amphibians Amphiuma sp. and Siren intermedia that inhabit ephemeral rivers and ponds of the southeastern United States.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benton, M. J. 1988. Burrowing by vertebrates. Nature, 331:1718.Google Scholar
Berman, D. S. 1976. Occurrence of Gnathorhiza (Osteichthyes: Dipnoi) in aestivation burrows in the Lower Permian of New Mexico with description of a new species. Journal of Paleontology, 50:10341039.Google Scholar
Bolt, J. R., and Wassersug, R. J.. 1975. Functional morphology of the skull in Lysorophus: A snake-like Paleozoic amphibian (Lepospondyli). Paleobiology, 1:320332.Google Scholar
Boyd, M. J. 1980. A lysorophid amphibian from the Coal Measures of northern England. Palaeontology, 23:925929.Google Scholar
Bromley, R. G. 1996. Trace Fossils: Biology and Taphonomy. Chapman and Hall, London, 361 p.Google Scholar
Buol, S. W., Hole, F. D., McCracken, R. J., and Southard, R. J.. 1997. Soil Genesis and Classification. Iowa State University Press, Ames, 446 p.Google Scholar
Carlson, K. J. 1968. The skull morphology and estivation burrows of the Permian lungfish, Gnathorhiza serrata. Journal of Geology, 76:641663.Google Scholar
Cope, E. D. 1883. Fourth contribution to the history of the Permian Formation of Texas. Proceedings of the American Philosophical Society, 20:628636.Google Scholar
Cunningham, C., and Dickson, E. P. III. 1996. Distributions of Kansas Permo-Carboniferous vertebrate assemblages as a function of wet and dry seasonality. Transactions of the Kansas Academy of Science, 99:1628.Google Scholar
Foreman, B. C., and Martin, L. D.. 1988. A review of Paleozoic tetrapod localities of Kansas and Nebraska, p. 133145. In Mapes, G. and Mapes, R. (eds.), Regional Geology and Paleontology of Upper Paleozoic Hamilton Quarry Area in Southeastern Kansas. Kansas Geological Survey Guidebook Series, 6.Google Scholar
Gans, C. 1974. Biomechanics: An Approach to Vertebrate Biology. J.B. Lippincott, Philadelphia, 261 p.Google Scholar
Groenewald, G. H., Welman, J., and MacEachern, J. A.. 2001. Vertebrate burrow complexes from the Early Triassic Cynognathus Zone (Driekoppen Formation, Beaufort Group) of the Karoo Basin, South Africa. Palaios, 16:148160.Google Scholar
Hasiotis, S. T., and Martin, A. J.. 1999. Probable reptile nests from the Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona. National Park Service, Paleontological Research, 4:8590.Google Scholar
Hasiotis, S. T., and Wellner, R. W.. 1999. Complex, large-diameter burrow systems, Upper Jurassic Morrison Formation, southeastern Utah; are these evidence of fossorial mammals? Geological Society of America Abstracts with Programs, 31:366.Google Scholar
Hasiotis, S. T., Miller, K. B., and McCahon, T. J.. 2002. Burrows of the lungfish Gnathorhiza within paleosols of the Lower Permian (Wolfcampian) of eastern Kansas: A unique paleoenvironmental setting and justification for a new ichnotaxon. Geological Society of America Abstracts with Programs, 34:63.Google Scholar
Hasiotis, S. T., Mitchell, C. E., and Dubiel, R. F.. 1993. Application of morphologic burrow interpretations to discern continental burrow architects: Lungfish or crayfish? Ichnos, 2:315333.Google Scholar
Hasiotis, S. T., Wellner, R. W., Martin, A. J., and Demko, T. M.. 2004. Vertebrate burrows from Triassic and Jurassic continental deposits of North America and Antarctica: Their paleoenvironmental and paleoecological significance. Ichnos, 11:103124.Google Scholar
Hattin, D. E. 1957. Depositional environment of the Wreford Megacyclothem (Lower Permian) of Kansas. Kansas Geological Survey Bulletin, 124:1117.Google Scholar
Heatwolfe, H. 1960. Burrowing ability and behavioral processes to desiccation of the salamander Plethodon cinereus. Ecology, 41:661668.Google Scholar
Hembree, D. I., Martin, L. D., and Hasiotis, S. T.. 2004. Amphibian burrows and ephemeral ponds of the Lower Permian Speiser Shale, Kansas: evidence for seasonality in the midcontinent. Palaeogeography, Palaeoclimatology, Palaeoecology, 203:127152.Google Scholar
Hook, R. W., and Baird, D.. 1986. The Diamond Coal Mine of Linton, Ohio, and its Pennsylvanian-age vertebrates. Journal of Vertebrate Paleontology, 6:174190.Google Scholar
International Commission OF Zoological Nomenclature. 1999. International Code on Zoological Nomenclature (fourth edition). ICZN, London, 360 p.Google Scholar
Kocurek, G. A. 1996. Desert aeolian systems, p. 125153. In Reading, H. G. (ed.), Sedimentary Environments Processes, Facies, and Stratigraphy. Blackwell Science, Oxford.Google Scholar
Lane, N. G. 1964. Paleoecology of the Council Grove Group (Lower Permian) in Kansas, based upon microfossil assemblages. Kansas Geological Survey Bulletin, 170:123.Google Scholar
Magwood, J. P. A. 1992. Ichnotaxonomy: A burrow by any other name… ? p. 1533. In Mapes, C. G. and West, R. R. (eds.), Trace Fossils, Short Courses in Paleontology, 5.Google Scholar
McAllister, J. A. 1991. The lungfish Gnathorhiza and its burrows from the Permian of Kansas. Unpublished Ph.D. dissertation, University of Kansas, Lawrence, 170 p.Google Scholar
Meyer, R. C. 1999. Helical burrows as a paleoclimate response: Diamonelix by Paleocastor. Palaeogeography, Palaeoclimatology, Palaeoecology, 147:291298.Google Scholar
Miller, K. B., McCahon, T. J., and West, R. R.. 1996. Lower Permian (Wolfcampian) paleosol-bearing cycles of the U.S. Midcontinent: Evidence of climatic cyclicity. Journal of Sedimentary Research, 66:7184.Google Scholar
Miller, M. F., Hasiotis, S. T., Babcock, L. E., Isbell, J. L., and Collinson, J. W.. 2001. Tetrapod and large burrows of uncertain origin in Triassic high paleolatitude floodplain deposits, Antarctica. Palaios, 16:218232.Google Scholar
Olson, E. C. 1956. Fauna of the Vale and Choza, 11. Lysorophus: Vale and Choza; Diplocaulus and Eryopidae: Choza. Fieldiana Geology, 10:313322.Google Scholar
Olson, E. C. 1971. A skeleton of Lysorophus tricarinatus (Amphibia: Lepospondyli) from the Hennessey Formation (Permian) of Oklahoma. Journal of Paleontology, 45:443449.Google Scholar
Olson, E. C., and Bolles, K.. 1975. Permo-Carboniferous fresh water burrows. Fieldiana Geology, 33:271290.Google Scholar
Pickerill, R.K. 1994. Nomenclature and taxonomy of invertebrate trace fossils, p. 342. In Donovan, S. K. (ed.), The Palaeobiology of Trace Fossils. Johns Hopkins University Press, Baltimore.Google Scholar
Pinder, A. W., Storey, K. B., and Ultsch, G. R.. 1992. Estivation and hibernation, p. 250274. In Feder, M. E. and Burggren, W. W. (eds.), Environmental Physiology of the Amphibians. University of Chicago Press, Chicago.Google Scholar
Ray, C. 1958. Vital limits and rates of desiccation in salamanders. Ecology, 39:7583.Google Scholar
Reno, H. W., Gehlbach, F. R., and Turner, R. A.. 1972. Skin and aestivational cocoon of the aquatic amphibian, Siren intermedia Le Conte. Copeia, 4:625631.Google Scholar
Retallack, G. T. 2001. Soils of the Past: An Introduction to Paleopedology. Unwin Hyman, Boston, 404 p.Google Scholar
Rome, L. C., Stevens, E. D., and John-Alder, H. B.. 1992. The influence of temperature and thermal acclimation on physiological function, p. 183205. In Feder, M. E. and Burggren, W. W. (eds.), Environmental Physiology of the Amphibians. University of Chicago Press, Chicago.Google Scholar
Romer, A. S., and Olson, E. C.. 1954. Aestivation in a Permian lungfish. Brevoria, 30:18.Google Scholar
Seilacher, A. 1964. Biogenic sedimentary structures, p. 296316. In Imbrie, J. and Newell, N. (eds.), Approaches to Paleoecology. Wiley, New York.Google Scholar
Seilacher, A. 1992. Quo vadis, ichnology? p. 224238. In Mapes, C. G. and West, R. R. (eds.), Trace Fossils, Short Courses in Paleontology, 5.Google Scholar
Schultze, H. P. 1985. Marine to onshore vertebrates in the Lower Permian of Kansas and their paleoenvironmental implications. University of Kansas Paleontological Contributions, 113:118.Google Scholar
Shoemaker, V. H., Hillman, S. S., Hillyard, D. C., Mc-Clanahan, L. L., Withers, P. C., and Wygoda, M. L.. 1992. Exchange of water, ions, and respiratory gases in terrestrial amphibians, p. 125150. In Feder, M. E. and Burggren, W. W. (eds.), Environmental Physiology of the Amphibians. University of Chicago Press, Chicago.Google Scholar
Smith, R. M. H. 1987. Helical burrow casts of therapsid origin from the Beaufort Group (Permian) of South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 60:155170.Google Scholar
Smith, R. M. H. 1995. Changing fluvial environments across the Permian-Triassic boundary in the Karoo Basin, South Africa and possible causes of tetrapod extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 117:81104.Google Scholar
Talbot, M. R., and Allen, P. A.. 1996. Lakes, p. 154231. In Reading, H. G. (ed.), Sedimentary Environments: Processes, Facies, and Stratigraphy. Blackwell Science, Oxford.Google Scholar
Wake, M. H. 1993. The skull as a locomotor organ, p. 197240. In Hanken, J. and Hall, B. K. (eds.), The Skull. Vol. 3: Functional and Evolutionary Mechanisms. The University of Chicago Press, Chicago.Google Scholar
Wellstead, C. F. 1991. Taxonomic revision of the Lysorophia, Permo-Carboniferous lepospondyl amphibians. Bulletin of the American Museum of Natural History, 209:190.Google Scholar
Wetzel, R. G. 2001. Limnology: Lake and River Ecosystems. Academic Press, San Diego, 1006 p.Google Scholar
Zug, G. R., Vitt, L. J., and Caldwell, J. P.. 2001. Herpetology. Academic Press, San Diego, 630 p.Google Scholar