Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T06:25:16.386Z Has data issue: false hasContentIssue false

Three-dimensionally preserved arthropods from Cambrian Lagerstätten of Quebec and Wisconsin

Published online by Cambridge University Press:  20 May 2016

Joseph H. Collette
Affiliation:
Department of Earth Sciences, University of California, Riverside, California, 92521,
James W. Hagadorn
Affiliation:
Department of Earth Sciences, Denver Museum of Nature and Science, Denver, Colorado, 80205

Abstract

Three new types of arthropod are described from Cambrian intertidal lithofacies of the Elk Mound Group and St. Lawrence Formation of Wisconsin and the Potsdam Group of Quebec. These arthropods are preserved ventrally in sandstone in life position and in three dimensions, allowing detailed characterization of limb morphologies, labrums, and other organs such as eyes. A taphonomic model is presented, illustrating this unusual, uncompressed, three-dimensional style of preservation. Arenosicaris inflata n. sp., from the Terreneuvian-Furongian Elk Mound Group and the Furongian St. Lawrence Formation, is the earliest unambiguous occurrence of a malacostracan phyllocarid. This 3 cm long arthropod had ovate valves, five pairs of biramous pleopods, and at least 3 pairs of thoracopods. Mosinieia macnaughtoni n. sp., a large (>10 cm long) euthycarcinoid of uncertain affinity with flattened or paddle-like appendages also occurs in Elk Mound strata. Mictomerus melochevillensis n. sp. represents a new euthycarcinoid family and is the first known non-trilobite arthropod from the middle Cambrian-Furongian Potsdam Group of Quebec. M. melochevillensis n. sp. is large (8–10+ cm long), with as many as eleven pairs of well-preserved homopodous, uniramous, non-paddle-like limbs. Both M. macnaughtoni and M. melochevillensis differ substantially from previously known euthycarcinoids in limb morphology and represent the oldest known representatives of the group. Additionally, both M. melochevillensis n. sp. and M. macnaughtoni n. sp. possess morphologies that are consistent with abundant subaerial and subaqueous Diplichnites and Protichnites trackways known from these units, suggesting that these may be the earliest land-going animals.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, L. A. and Trewin, N. H. 2003. An Early Devonian arthropod fauna from the Windyfield Cherts, Aberdeenshire, Scotland. Palaeontology, 46:467509.CrossRefGoogle Scholar
Anderson, R., Mckay, R., and Witzke, B. 1979. Field trip guidebook to the Cambrian stratigraphy of Allamakee County. Geological Society of Iowa, Guidebook 32, 12 p.Google Scholar
Aswasereelert, W., Simo, J. A., and Lepain, D. L. 2008. Deposition of the Cambrian Eau Claire Formation, Wisconsin: Hydrostratigraphic implications of fine-grained cratonic sandstones. Geoscience Wisconsin, 19(1):121.Google Scholar
Bergström, J., Briggs, D. E. G., Dahl, E., Rolfe, W. D. I., and Stürmer, W. 1987. Nahecaris stuertzi, a phyllocarid crustacean from the Lower Devonian Hunsrück Slate. Paläontologische Zeitschrift, 61:273298.CrossRefGoogle Scholar
Bjerstedt, T. W. and Erickson, J. M. 1989. Trace fossils and bioturbation in peritidal facies of the Potsdam-Theresa formations (Cambrian-Ordovician), Northwest Adirondacks. Palaios, 4:203224.CrossRefGoogle Scholar
Blakey, R. C. 2007. Carboniferous–Permian paleogeography of the assembly of Pangaea, p. 443456. In Wong, T. E., (ed.), Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy. University of Chicago Press, Chicago.Google Scholar
Boxshall, G. A. 2004. The evolution of arthropod limbs. Biological Reviews, 79:253300.CrossRefGoogle ScholarPubMed
Braddy, S. J. 2001. Eurypterid palaeoecology: Palaeobiological, ichnological and comparative evidence for a “mass-moult-mate” hypothesis. Palaeogeography, Palaeoclimatology, Palaeoecology, 172:115132.CrossRefGoogle Scholar
Briggs, D. E. G., Sutton, M. D., Siveter, D. J., and Siveter, D. J. 2003. A new phyllocarid (Crustacea: Malacostraca) from the Silurian Fossil-Lagerstätte of Herefordshire, UK. Proceedings of the Royal Society of London, 271:131138.CrossRefGoogle Scholar
Byers, C. W. and Dott, R. H. Jr. 1995. Sedimentology and depositional sequences of the Jordan Formation (Upper Cambrian), Northern Mississippi Valley. Journal of Sedimentary Petrology, B65:289305.Google Scholar
Clark, T. H. 1966. Châteauguay area. Ministère de l'énergie et des Ressources du Québec, Geological Report RG-122.Google Scholar
Clark, T. H. 1972. Montreal area. Ministère de l'énergie et des Ressources du Québec, Geological Report RG-152.Google Scholar
Claus, C. 1888. über den Organismus der Nebaliden und die systematische Stellung der Leptostraken. Arbeiten aus dem zoologische Institut der Universität Wien und der zoologischen Station in Triest, 8:1148.Google Scholar
Collette, J. H., Hagadorn, J. W., and Lacelle, M. A. In press. Dead in their tracks: Cambrian arthropods and their traces from intertidal sandstones of Quebec and Wisconsin. Palaios.Google Scholar
Dahl, E. 1984. The Subclass Phyllocarida (Crustacea) and the status of some early fossils: a neontologist's view. Videnskabelige meddelelser fra Dansk Naturhistorisk Forening, 145:6176.Google Scholar
Driese, S. G., Byers, C. W., and Dott, R. H. Jr. 1981. Tidal deposition in the basal Upper Cambrian Mt. Simon Formation in Wisconsin. Journal of Sedimentary Petrology, 51:367381.Google Scholar
Dunlop, J. A., Anderson, L. I., and Braddy, S. J. 2004. A redescription of Chasmataspis laurencii Caster and Brooks, 1956 (Chelicerata: Chasmataspidida) from the Middle Ordovician of Tennessee, USA, with remarks on chasmataspid phylogeny. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94:207225.CrossRefGoogle Scholar
Edgecombe, G. D. and Morgan, H. 1999. Synaustrus and the euthycarcinoid puzzle. Alcheringa, 23:193213.CrossRefGoogle Scholar
Gaillard, C., Goy, J., Bernier, P., Bourseau, J. P., Gall, J. C., Barale, G., Buffetaut, E., and Wenz, S. 2006. New jellyfish taxa from the Upper Jurassic lithographic limestone of Cerin (France): Taphonomy and ecology. Palaeontology, 49:12871302.CrossRefGoogle Scholar
Gall, J.-C. and Grauvogel, L. 1964. Un arthropode peu connu, le genre Euthycarcinus Handlirsch. Annales de Paléontologie, Invértebrés, 50:118.Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14: 4057.CrossRefGoogle Scholar
Grazhdankin, D. 2004. Patterns of distribution in the Ediacaran biotas: Facies versus biogeography and evolution. Paleobiology, 30:203221.2.0.CO;2>CrossRefGoogle Scholar
Gutierrez-Marco, J. C., Sa, A. A., Garcia-Bellido, D. C., Rabano, I., and Valerio, M. 2009. Giant trilobites and trilobite clusters from the Ordovician of Portugal. Geology, 37:443446.CrossRefGoogle Scholar
Hagadorn, J. W. 2008. The First Animals on Land: Al Curran(t) State of Knowledge. Geological Society of America, Abstracts with Programs, 40(6):230.Google Scholar
Hagadorn, J. W., and Belt, E. S. 2008. Stranded in upstate New York: Cambrian medusae from the Potsdam Sandstone. Palaios, 23:424441.CrossRefGoogle Scholar
Hagadorn, J. W. and Seilacher, A. 2009. Hermit arthropods 500 million years ago? Geology, 37:295298.CrossRefGoogle Scholar
Hagadorn, J. W., Dott, R. H. Jr., and Damrow, D. 2002. Stranded on a Late Cambrian shoreline: Medusae from central Wisconsin. Geology, 30:147150.2.0.CO;2>CrossRefGoogle Scholar
Haney, T. A. and Martin, J. W. 2000. Nebalia gerkenae, a new species of leptostracan (Crustacea: Malacostraca: Phyllocarida) from the Bennett Slough region of Monterey Bay, California. Proceedings of the Biological Society of Washington, 113:9961014.Google Scholar
Hesselbo, S. P. 1989. The Aglaspidid arthropod Beckwithia from the Cambrian of Utah and Wisconsin. Journal of Paleontology, 63:636642.CrossRefGoogle Scholar
Hofmann, H. J. 1972. Stratigraphy of the Montreal area. – Stratigraphie de la région de Montréal. International Geological Congress, 24th Session, Montreal, Guidebook for Excursion B-03, 32 p.Google Scholar
Hoxie, C. T. 2005. Late Cambrian arthropod trackways in subaerially exposed environments: incentives to simplify a problematic ichnogenus. Unpublished B.A. thesis, Amherst College, 89 p.Google Scholar
Hou, X.-G. and Bergström, J. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils & Strata, 45:1116.Google Scholar
Hou, X.-G., Siveter, D. J., Williams, M., Walossek, D., and Bergström, J. 1996. Appendages of the arthropod Kunmingella from the Early Cambrian of China: Its bearing on the systematic position of the Bradoriida and the fossil record of the Ostracoda. Philosophical Transactions: Biological Sciences, 351, 1344:11311145.Google Scholar
Hou, X.-G., Aldridge, R. J., Bergström, J., Siveter, D. J., Siveter, D. J., and Feng, X. H. 2004. The Cambrian fossils of Chengjiang, China: The flowering of animal life. Blackwell Science Ltd, London, 248 p.Google Scholar
Hou, X.-G., Siveter, D. J., Aldridge, R., and Siveter, D. J. 2008. Collective behavior in an Early Cambrian arthropod. Science, 322:224.CrossRefGoogle Scholar
Hughes, N. C. and Hesselbo, S. P. 1997. Stratigraphy and sedimentology of the St. Lawrence Formation, Upper Cambrian of the northern Mississippi valley. Milwaukee Public Museum Contributions in Biology and Geology, 91:150.Google Scholar
Hughes, N. C., Gunderson, G. O., and Weedon, M. J. 1997. Circumocular suture and visual surface of “Cedaria” woosteri (Trilobita, Late Cambrian) from the Eau Claire Formation, WI. Journal of Paleontology, 71:103107.CrossRefGoogle Scholar
Kues, B. S. and Kietzke, K. K. 1981. A large assemblage of a new eurypterid from the Red Tanks Member, Madera Formation (Late Pennsylvanian-Early Permian) of New Mexico. Journal of Paleontology, 55:709729.Google Scholar
Lacelle, M. A., Hagadorn, J. W., and Groulx, P. 2008. The widespread distribution of Cambrian Medusae: Scyphomedusa strandings in the Potsdam Group of southwestern Quebec. Geological Society of America Annual Meeting, Abstracts with Programs, Houston, 40(6):369.Google Scholar
Macnaughton, R. B., Cole, J. M., Dalrymple, R. W., Braddy, S. J., Briggs, D. E. G., and Lukie, T. D. 2002. First steps on land: Arthropod trackways in Cambrian-Ordovician eolian sandstone, southeastern Ontario, Canada. Geology, 30:391394.2.0.CO;2>CrossRefGoogle Scholar
Macnaughton, R. B., Hagadorn, J. W., and Dott, R. H. Jr. 2003. Did the Climactichnites organism leave the water? Palaeoecological insights from the Upper Cambrian of central Wisconsin. Canadian Paleontology Conference, Proceedings, Geological Association of Canada, 1:2627.Google Scholar
Mcnamara, K. J. and Trewin, N. H. 1993. A euthycarcinoid arthropod from the Silurian of Western Australia. Palaeontology, 36:319335.Google Scholar
Minter, N. J., Krainer, K., Lucas, S. G., Braddy, S. J., and Hunt, A. P. 2007. Palaeoecology of an Early Permian playa lake trace fossil assemblage from Castle Peak, Texas, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 246:390423.CrossRefGoogle Scholar
Narbonne, G. M. 1998. The Ediacaran biota: A terminal Neoproterozoic experiment in the evolution of life. GSA Today, 8:16.Google Scholar
Packard, A. S. Jr. 1879. The Nebaliad Crustacea as types of a new order. American Naturalist, 13:128.Google Scholar
Raasch, G. O. 1951. Revision of Croixian dikelocephalids. Illinois Academy of Science Transactions, 44:137151.Google Scholar
Rolfe, W. D. I. 1981. Phyllocarida and the origin of the Malacostraca. Géobios, 14:1727.CrossRefGoogle Scholar
Rose, E. C. and Hagadorn, J. W. 2006. Why the Sauk Transgression is not just another type of shoreline advance. Geological Society of America, Abstracts with Programs, 38(7):477.Google Scholar
Runkel, A. C., Mckay, R. M., and Palmer, A. R. 1998. Origin of a classic cratonic sheet sandstone: Stratigraphy across the Sauk II–Sauk III boundary in the Upper Mississippi Valley. Geological Survey of America Bulletin, 110:188210.2.3.CO;2>CrossRefGoogle Scholar
Salad Hersi, O. and Lavoie, D. 2000a. Pre-Cairnside Formation carbonate-rich sandstone: evidence for a Cambrian carbonate platform in southwestern Quebec. Geological Survey of Canada, Current Research, 2000-D3, 8 p.CrossRefGoogle Scholar
Salad Hersi, O. and Lavoie, D. 2000b. Lithostratigraphic revision of the Upper Cambrian Cairnside Formation, Upper Potsdam Group, southwestern Québec, Canada. Current Research 2000-D4, 8 p.CrossRefGoogle Scholar
Schneider, J. 1983. Euthycarcinus martensi n. Sp.–Ein neuer Arthropode aus dem mitteleuropäischen Rotliegenden (Perm) mit Bemerkungen zu limnischen Arthropoden-Assoziationen. Freiberger Forschungshefte, Series C, 384:4957.Google Scholar
Schopf, T. J. M. 1978. Fossilization potential of an intertidal fauna: Friday Harbor, Washington. Paleobiology, 4:261–70.CrossRefGoogle Scholar
Schram, F. R. and Rolfe, W. D. I. 1982. New euthycarcinoid arthropods from the Upper Pennsylvanian of France and Illinois. Journal of Paleontology, 56:14341450.Google Scholar
Seilacher, A. 2008. Biomats, biofilms, and bioglue as preservational agents for arthropod trackways. Palaeogeography, Palaeoclimatology, Palaeoecology, 270:252257.CrossRefGoogle Scholar
Selleck, B. 1993. Sedimentology and diagenesis of the Potsdam Sandstone and Theresa Formation, southwestern St. Lawrence Valley, New York. State Geological Association, Annual Meeting, Field Trip Guidebook, 65:219228.Google Scholar
Shu, D., Vannier, J., Luo, H., Chen, L., Zhang, X., and Hu, S. 1999. Anatomy and lifestyle of Kunmingella (Arthropoda, Bradoriida) from the Chengjiang fossil Lagerstätte (lower Cambrian; Southwest China). Lethaia, 32:279298.CrossRefGoogle Scholar
Steiner, M. and Reitner, J. 2001. Evidence of organic structures in Ediacara-type fossils and associated microbial mats. Geology, 29:11191122.2.0.CO;2>CrossRefGoogle Scholar
Taylor, R. S. 2002. A new bivalve arthropod from the Early Cambrian Sirius Passet fauna, North Greenland. Palaeontology, 45:97123.CrossRefGoogle Scholar
Vaccari, N. E., Edgecombe, G. D., and Escudero, C. 2004. Cambrian origins and affinities of an enigmatic fossil group of arthropods. Nature, 430:554557.CrossRefGoogle ScholarPubMed
Vannier, J., Racheboeuf, P., Brussa, E., Williams, M., Rushton, A. W. A., Servais, T. H., and Siviter, D. J. 2003. Cosmopolitan arthropod zooplankton in the Ordovician seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 79:119.Google Scholar
Vannier, J., Thiíry, A., and Racheboeuf, P. R. 2003. Spinicaudatans and ostracods (Crustacea) from the Montceau Lagerstätte (Late Carboniferous, France): Morphology and palaeoenvironmental significance. Palaeontology, 46:9991030.CrossRefGoogle Scholar
Wahlman, G. P. and Caster, K. E. 1978. Bearing of new Texas Upper Cambrian arthropods on merostomate classification. Geological Survey of America, Abstracts with Programs, 10:286.Google Scholar
Walossek, D. 1999. On the Cambrian diversity of Crustacea, p. 327. In Crustaceans and the Biodiversity Crisis, Schram, F. R. and von Vaupel Klein, J. C., (eds.), Brill, Leiden.Google Scholar
York, A., Hagadorn, J. W., and Bernstein, J. 2005. Upper Cambrian sand stromatolites of central Wisconsin. Geological Society of America Abstracts with Programs, 37:444.Google Scholar