Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-07T16:49:03.697Z Has data issue: false hasContentIssue false

Taxonomy and magnetobiochronology of Tribrachiatus and Rhomboaster, two genera of Calcareous nannofossils

Published online by Cambridge University Press:  20 May 2016

Wuchang Wei
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego 92093-0215
Shilan Zhong
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego 92093-0215

Abstract

The genus Tribrachiatus (all species of which are widely used stratigraphic markers) and its related genus Rhomboaster are studied in type samples and in five DSDP/ODP sites that have magnetostratigraphies and range from low through high latitudes. Rhomboaster calcitrapa, R. spineus, and R. bitrifida are shown to be junior synonyms of R. cuspis. Rhomboaster transforms into T. bramlettei by flattening of the nannolith. This makes the location of the first occurrence (FO) of T. bramlettei difficult and imprecise. The FO of Rhomboaster, however, is less ambiguous and more reliable for global stratigraphic correlation. Tribrachiatus contortus has a very short (< 1 m.y.) and consistent stratigraphic range. The FO of T. orthostylus is located very near the top of Chron C24r and slightly below the last occurrence of T. contortus. This study also presents detailed morphometric data on the changes from T. bramlettei to T. contortus to T. orthostylus, and calibrates their changes through time with magnetostratigraphy. This shows a detailed picture of the progressive evolution in this group as well as offers an age curve for high-resolution stratigraphic correlation.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubry, M.-P. 1988. Handbook of Cenozoic Calcareous Nannoplankton, Book 2: Orhtholithae (Holococcoliths, Ceratoliths and others). Micropaleontology Press, American Museum of Natural History, 279 pp.Google Scholar
Backman, J. 1986a. Late Paleocene to middle Eocene calcareous nannofossil biochronology from the Shatsky Rise, Walvis Ridge and Italy. Palaeogeography, Palaeoecology, Palaeoclimatology, 57:4359.Google Scholar
Backman, J. 1986b. Accumulation patterns of Tertiary calcareous nannofossils around extinctions. Geologische Rundschau, 75:185196.Google Scholar
Barker, P. F., et al. 1988. Proceedings of the Ocean Drilling Program, Initial Reports, 103. Ocean Drilling Program, College Station, Texas.Google Scholar
Barker, P. F., et al. 1990. Proceedings of the Ocean Drilling Program, Scientific Results, 103. Ocean Drilling Program, College Station, Texas.Google Scholar
Berggren, W. A., Kent, D. V., and Van Covering, J. A. 1985. Paleogene geochronology and chronostratigraphy. In Snelling, N. J. (ed.), The Chronology of the Geological Record. Geological Society of London Memoir, 10:211250.Google Scholar
Berggren, W. A., Kent, D. V., Obradovic, J. D., and Swisher, C. C. III. 1992. Toward a revised Paleogene geochronology, p. 2945. In Prothero, D. R. and Berggren, W. A. (eds.), Eocene-Oligocene Climatic and Biotic Evolution. Princeton University Press, Princeton.Google Scholar
Bleil, U. 1985. The magnetostratigraphy of northwest Pacific sediments, Deep Sea Drilling Project Leg 86, p. 441458. In Heath, G. R. et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 86. United States Government Printing Office, Washington, D.C.Google Scholar
Bramlette, M. N., and Riedel, W. R. 1954. Stratigraphic value of discoasters and some other microfossils related to recent coccolithophores. Journal of Paleontology, 28:385403.Google Scholar
Bramlette, M. N., and Sullivan, F. R. 1961. Coccolithophorids and related nannoplankton of the early Tertiary in California. Micropaleontology, 7:129188.Google Scholar
Brönnimann, V. P., and Stradner, H. 1960. Die Foraminiferen- und Discoasteridenzonen von Kuba und ihre interkontinentale korrelation. Erdoel-Zeitschrift, 10:364369.Google Scholar
Bukry, D. 1972. Further comments on coccolith stratigraphy, Leg 12, Deep Sea Drilling Project, p. 10711083. In Laughton, A. S., Berggren, W. A. et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 12. United States Government Printing Office, Washington, D.C.Google Scholar
Bybell, L. M., and Self-Trail, J. M. 1995. Evolutionary, biostratigraphic, and taxonomic study of calcareous nannofossils from a continuous Paleocene-Eocene boundary section in New Jersey. U.S. Geological Survey Professional Paper 1554. United States Government Printing Office, Washington.CrossRefGoogle Scholar
Cande, S., and Kent, D. V. 1992. A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 97:1391713951.Google Scholar
Cande, S., and Kent, D. V. 1995. Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 100:60936095.Google Scholar
Deflandre, G., 1959. Sur les nannofossiles calcaires et leur systematique. Revue de Micropaleontogie, 2:127152.Google Scholar
Gartner, S. 1971. Calcareous nannofossils from the JOIDES Blake Plateu cores, and revision of Paleogene nannofossil zonation. Tulane Studies in Geology and Paleontology, 8:101121.Google Scholar
Gee, J., Klootwijk, C. T., and Smith, G. M. 1991. Magnetostratigraphy of Paleogene and Upper Cretaceous sediments from Broken Ridge, eastern Indian Ocean, p. 359376. In Peirce, J. et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 121. Ocean Drilling Program, College Station, Texas.Google Scholar
Graciansky, P. C., et al. 1985. Initial Reports of the Deep Sea Drilling Project, 80. United States Government Printing Office, Washington, D.C.Google Scholar
Greuter, W., and Nicolson, D. H. 1993. On the threshold of a new nomenclature. Taxon, 42:925927.Google Scholar
Heath, G. R., et al. 1985. Initial Reports of the Deep Sea Drilling Project, 86. United States Government Printing Office, Washington, D.C.Google Scholar
Hekel, H. 1968. Nannoplantonhorizonte und tektonische strukturen in der Flyschzone nordlich von Wien (Bisambergzug). Jahrbuch der Geologische Bundesanstalt, 111:293337.Google Scholar
Jiang, Y. W., and Wise, S. W. Jr. 1987. Paleocene-Eocene calcareous nannofossils of onshore wells from the coastal plain of New Jersey and Maryland, U.S.A., p. 699711. In van Hinte, J. E., Wise, S. W., et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 93. United States Government Printing Office, Washington, D.C.Google Scholar
Kennett, J. P., and Stott, L. D. 1991. Abrupt deep-sea warming, paleoceanographic changes and benthic extinctions at the end of the palaeocene. Nature, 353:225229.Google Scholar
Knox, R. W. O'B. 1984. Nannoplankton zonation and the Palaeocene/Eocene boundary beds of NW Europe: an indirect correlation by means of volcanic ash layers. Journal of the Geological Society, London, 141:993999.Google Scholar
Martini, E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation, p. 738783. In Farinacci, A. (ed.), Proceedings II Planktonic Conference, Roma, 1970, 2.Google Scholar
Matsuoka, H., and Okada, H. 1989. Quantitative analysis of Quaternary nannoplankton in the subtropical northwestern Pacific Ocean. Marine Micropaleontology, 14:97118.Google Scholar
Monechi, S. 1985. Campanian to Pleistocene calcareous nannofossil stratigraphy from the northwest Pacific Ocean, Deep Sea Drilling Project Leg 86, p. 301336. In Heath, G. R., Burckle, L. H., et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 86. United States Government Printing Office, Washington, D.C.Google Scholar
Moore, T. C., et al. 1984. Initial Reports of the Deep Sea Drilling Project, 74. United States Government Printing Office, Washington, D.C.Google Scholar
Moshkovitz, S. 1978. New types of cover-slip and mounting-slide with a graticule for examination of the same small object both by the light microscope and the scanning electron microscope. Microscopica Acta, 80:161166.Google Scholar
Müller, C. 1979. Calcareous nannoplankton from the North Atlantic (Leg 48), p. 589639. In Montadert, L., Roberts, G. G., et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 48. United States Government Printing Office, Washington, D.C.Google Scholar
Müller, C. 1985. Biostratigraphic and paleoenvironmental interpretation of the Goban Spur region based on a study of calcareous nannoplankton, p. 573599. In Graciansky, P. C., Poag, C. W., et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 80. United States Government Printing Office, Washington, D.C.Google Scholar
Okada, H., and Bukry, D. 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry 1973, 1975). Marine Micropaleontology, 5:321325.Google Scholar
Peirce, J., et al. 1989. Proceedings of the Ocean Drilling Program, Initial Reports, 121. Ocean Drilling Program, College Station, Texas.CrossRefGoogle Scholar
Peirce, J., et al. 1991. Proceedings of the Ocean Drilling Program, Scientific Results, 121. Ocean Drilling Program, College Station, Texas.Google Scholar
Perch-Nielsen, K. 1985. Cenozoic nannofossils, p. 427554. In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K. (eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge.Google Scholar
Pospichal, J. J. 1995. Mass extinction of calcareous nannoplankton at the Cretaceous/Tertiary boundary. In Proceedings of the Conference on New Developments Regarding the KT Event and Other Catastrophes in Earth history.Google Scholar
Pospichal, J. J., et al. 1991. Cretaceous-Paleogene biomagnetostratigraphy of Sites 752-755, Broken Ridge: a synthesis, p. 721741. In Peirce, J. et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 121. Ocean Drilling Program, College Station, Texas.Google Scholar
Pospichal, J. J., and Wise, S. W. 1990. Paleocene to middle Eocene calcareous nannofossils of ODP Sites 689 and 690, Maud Rise, Weddell Sea, p. 613638. In Barker, P. F. et al. (eds.), Proceedings of the Ocean Drilling Program, 113. Ocean Drilling Program, College Station, Texas.Google Scholar
Proto Decima, F., Roth, H., and Todesco, L. 1975. Nannoplancton calcareo del Paleocene e dell’ Eocene della Sezione di Possagno. Schweizerische Palaontologische Abhandlungen, 97:3555.Google Scholar
Romein, A. J. T. 1979. Lineages in early Paleogene calcareous nannoplankton. Utrecht Micropaleontological Bulletins, 22:1231.Google Scholar
Shackleton, N. J., and Shipboard Scientific Party. 1984. Accumulation rates in Leg 74 sediments, p. 621637. In Moore, T. C. et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 74. United States Government Printing Office, Washington, D.C.Google Scholar
Shafik, S., and Stradner, H. 1971. Nannofossils from the Eastern Desert, Egypt with reference to Maastrichtian nannofossils from the USSR. Jahrbuch der Geologischen Bundesanstalt, 17:69104.Google Scholar
Shamrai, I. A. 1963. Certain forms of Upper Cretaceous and Paleogene coccoliths and discoasters from the southern Russian Platform. Izvestiya Vysshith Uchebnyk Zavedenii Geologiya i Razvedka, 6:2740.Google Scholar
Spieß, V. 1990. Cenozoic magnetostratigraphy of Leg 113 drill sites, Maud Rise, Weddell Sea, Antarctica, p. 261315. In Barker, P. F., Kennett, J. P., et al. (eds.), Proceedings of the Ocean Drilling Program, 113. Ocean Drilling Program, College Station, Texas.Google Scholar
Stradner, H. 1958. Die fossilen Discoasteriden Osterreichs; I. Erdoel-Zeitschrift, 74:178188.Google Scholar
Swisher, C. C., and O', R. W.Knox, B. 1991. The age of the Paleocene/Eocene boundary: 40Ar/39Ar dating of the lower part of NP10, North Sea Basin and Denmark. Paper presented at the International Geological Correlation Project 308: Paleocene/Eocene boundary, Brussels Meeting, Dec. 2–6, 1991.Google Scholar
Thomas, E. 1990. Late Cretaceous through Neogene deep-sea benthic foraminifers (Maud Rise, Weddell Sea, Antarctica), p. 571594. In Barker, P. F. et al. (eds.), Proceedings of the Ocean Drilling Program, 113. Ocean Drilling Program, College Station, Texas.Google Scholar
Townsend, H. A. 1985. The paleomagnetism of sediments acquired from the Goban Spur on Deep Sea Drilling Project Leg 80, p. 389414. In Graciansky, P. C., Poag, C. W., et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 80. United States Government Printing Office, Washington, D.C.Google Scholar
Wei, W. 1992. Paleogene chronology of Southern Ocean drill holes: an update, p. 7596. In Kennett, J. P. and Warnke, D. A. (eds.), The Antarctic Paleonenvironment: A Perspective on Global Change. Antarctic Research Series, 56.Google Scholar
Wei, W. 1995a. Revised age calibration points for the geomagnetic polarity time scale. Geophysical Research Letter, 22:957960.CrossRefGoogle Scholar
Wei, W. 1995b. A short note on the Paleocene-Eocene transition in DSDP Hole 550. Earth and Planetary Science Letters, 131:423425.Google Scholar
Wei, W., and Pospichal, J. 1991. Danian calcareous nannofossil succession at Site 738 in the southern Indian Ocean, p. 495512. In Barron, J., Larsen, B., et al. (eds.), Proceedings of the Ocean Drilling Program, 119. Ocean Drilling Program, College Station, Texas.Google Scholar
Wei, W., and Wise, S. W. 1989. Paleogene calcareous nannofossil magnetobiochronology: results from South Atlantic DSDP Site 516. Marine Micropaleontology, 14:119152.CrossRefGoogle Scholar