Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T11:48:26.296Z Has data issue: false hasContentIssue false

Taxonomic revision of Ediacaran tubular fossils: Cloudina, Sinotubulites and Conotubus

Published online by Cambridge University Press:  22 October 2021

Ben Yang*
Affiliation:
MNR Key Laboratory of Stratigraphy and Palaeontology, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China ,
Lucas V. Warren
Affiliation:
Department of Geology, Institute of Geosciences and Exact Sciences, São Paulo State University, Av. 24A, Rio Claro, 13506–900, Brazil
Michael Steiner
Affiliation:
College of Earth Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao, China Department of Earth Sciences, Freie Universität Berlin, Malteserstrasse 74–100, 12249 Berlin, Germany
Emily F. Smith
Affiliation:
Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MA 21218, USA
Pengju Liu
Affiliation:
MNR Key Laboratory of Stratigraphy and Palaeontology, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China ,
*
*Corresponding author

Abstract

The Ediacaran tubular fossils Cloudina, Sinotubulites, and Conotubus are taxonomically revised with type materials. It is proposed that Aulophycus lucianoi Beurlen and Sommer, 1957, is not a senior synonym of Cloudina hartmannae Germs, 1972. Instead, most of its syntypes may be assigned to Sinotubulites or other taxa. Lectotypes of Sinotubulites baimatuoensis Chen et al., 1981, and Conotubus hemiannulatus Zhang and Lin in Lin et al., 1986, are designated from rediscovered syntypes. Sinotubulites baimatuoensis Chen et al., 1981, is reported from the Mooifontein Member of Nama Group at Aar Farm, Namibia. Cloudina waldei Hahn and Pflug, 1985, is assigned to Sinotubulites baimatuoensis, and thus its occurrence range is extended to Brazil. The lectotype of Conotubus hemiannulatus shows corrugations and annulations on the surface distinguishing it from Cloudina and other collared Ediacaran tubular fossils. Based on the taxonomic revision, we propose a Cloudina hartmannae Interval Zone for the terminal Ediacaran with the upper boundary defined by the first appearance datum of Protohertzina anabarica (i.e., the index fossil of the early Cambrian Anabarites trisulcatus-Protohertzina anabarica Assemblage Zone).

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adorno, R.R., Carmo, D.A.d., Germs, G., Walde, D.H.G., Denezine, M., et al., 2017, Cloudina lucianoi (Beurlen & Sommer, 1957), Tamengo Formation, Ediacaran, Brazil: Taxonomy, analysis of stratigraphic distribution and biostratigraphy: Precambrian Research, v. 301, p. 1935.CrossRefGoogle Scholar
Adorno, R.R., Walde, D.H.G., Erdtmann, B.D., Denezine, M., Cortijo, I., Do Carmo, D.A., Giorgioni, M., Ramos, M.E.A.F., and Fazio, G., 2019, First occurrence of Cloudina carinata Cortijo et al., 2010 in South America, Tamengo Formation, Corumbá Group, upper Ediacaran of Midwestern: Estudios Geológicos, v. 75, e095. https://doi.org/10.3989/egeol.43587.550.CrossRefGoogle Scholar
Becker-Kerber, B., and Pacheco, M.L.A.F., 2018, Comment on Adorno et al. (2017) “Cloudina lucianoi (Beurlen & Sommer, 1957), Tamengo Formation, Ediacaran, Brazil: Taxonomy, analysis of stratigraphic distribution and biostratigraphy” : Precambrian Research, v. 317, p. 268270.CrossRefGoogle Scholar
Becker-Kerber, B., Pacheco, M.L.A.F., Rudnitzki, I.D., Galante, D., Rodrigues, F., and de Moraes Leme, J., 2017, Ecological interactions in Cloudina from the Ediacaran of Brazil: implications for the rise of animal biomineralization : Scientific Reports, v. 7, 5482. https://doi.org/10.1038/s41598-017-05753-8.CrossRefGoogle ScholarPubMed
Becker-Kerber, B., da Silva, F.R., Borges Amorim, K., Liza Alves Forancelli Pacheco, M., and de Moraes Leme, J., 2019, Putting the cart before the horse: an example of how the lack of taphonomical approaches can mislead paleobiological inferences for the late Ediacaran : Precambrian Research, v. 332, 105385. https://doi.org/10.1016/j.precamres.2019.105385.CrossRefGoogle Scholar
Bengtson, S., and Yue, Z., 1992, Predatorial borings in late Precambrian mineralized exoskeletons: Science, v. 257, p. 367369.CrossRefGoogle ScholarPubMed
Beurlen, K., and Sommer, F.W., 1957, Observac¸ ões estratigráficas e paleontológicas sobreo calcário Corumbá: Boletim de Geologia e Mineralogia-DNPM, v. 168, p. 147.Google Scholar
Brain, C.K., 2001, Some observations on Cloudina, a terminal Proterozoic index fossil from Namibia: Journal of African Earth Sciences, v. 33, p. 475480.CrossRefGoogle Scholar
Cai, Y., and Hua, H., 2007, Pyritization in the Gaojiashan Biota: Chinese Science Bulletin, v. 52, p. 645650.CrossRefGoogle Scholar
Cai, Y., and Hua, H., 2008, Fossil diagenesis and weathering of pyritized fossils in the late Ediacaran Gaojiashan Biota in Ningqiang, Shaanxi: Acta Palaeontologica Sinica, v. 47, p. 214221. [in Chinese with English abstract]Google Scholar
Cai, Y., Hua, H., Xiao, S., Schiffbauer, J.D., and Li, P., 2010, Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerstätte from southern Shaanxi, South China: importance of event deposits: Palaios, v. 25, p. 487506.CrossRefGoogle Scholar
Cai, Y., Schiffbauer, J.D., Hua, H., and Xiao, S., 2011, Morphology and paleoecology of the late Ediacaran tubular fossil Conotubus hemiannulatus from the Gaojiashan Lagerstätte of southern Shaanxi Province, South China: Precambrian Research, v. 191, p. 4657.CrossRefGoogle Scholar
Cai, Y., Hua, H., and Zhang, X., 2013, Tube construction and life mode of the late Ediacaran tubular fossil Gaojiashania cyclus from the Gaojiashan Lagerstätte: Precambrian Research, v. 224, p. 255267.CrossRefGoogle Scholar
Cai, Y., Xiao, S., Hua, H., and Yuan, X., 2015, New material of the biomineralizing tubular fossil Sinotubulites from the late Ediacaran Dengying Formation, South China: Precambrian Research, v. 261, p. 1224.CrossRefGoogle Scholar
Cai, Y., Cortijo, I., Schiffbauer, J.D., and Hua, H., 2017, Taxonomy of the late Ediacaran index fossil Cloudina and a new similar taxon from South China: Precambrian Research, v. 298, p. 146156.CrossRefGoogle Scholar
Cai, Y., Xiao, S., Li, G., and Hua, H., 2019, Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion: Geology, v. 47, p. 380384.CrossRefGoogle Scholar
Chen, M., and Wang, Y., 1977, Tubular animal fossils in the middle Denying Formation, upper Sinian, East Yangtze Gorge: Chinese Science Bulletin, v. 4–5, p. 219221. [in Chinese]Google Scholar
Chen, M., Chen, Y., and Qian, Y., 1981, Some tubular fossils from Sinian–lower Cambrian boundary sequences, Yangtze Gorge: Bulletin of the Tianjin Institute of Geology and Mineral Resources, v. 3, p. 117124. [in Chinese with English abstract]Google Scholar
Chen, X., Zhou, P., Zhang, B., Wei, K., and Zhang, M., 2016, Lithostratigraphy, biostratigraphy, sequence stratigraphy and carbon isotope chemostratigraphy of the upper Ediacarian in Yangtze Gorges and their significance for chronostratigraphy: Geology and Mineral Resources of South China, v. 32, p. 87105. [in Chinese with English abstract]Google Scholar
Chen, Z., and Sun, W., 2001, Late Sinian (tubular) metazoan fossils: Cloudina and Sinotubulites from southern Shaanxi: Acta Micropalaeontologica Sinica, v. 18, p. 180202. [in Chinese with English summary]Google Scholar
Chen, Z., Bengtson, S., Zhou, C.M., Hua, H., and Yue, Z., 2008, Tube structure and original composition of Sinotubulites: shelly fossils from the late Neoproterozoic in southern Shaanxi, China: Lethaia, v. 41, p. 3745.CrossRefGoogle Scholar
Conrad, T., 1875, Descriptions of New Genera and Species of Fossil Shells of North Carolina: Appendix, in Kerr, W.C., ed., Report of the Geological Survey of North Carolina: Raleigh, Josiah Turner, 12 p.Google Scholar
Conway Morris, S., Mattes, B., and Chen, M., 1990, The early skeletal organism Cloudina: new occurrences from Oman and possibly China: American Journal of Science, v. 290, p. 245260.Google Scholar
Cortijo, I., Martí Mus, M., Jensen, S., and Palacios, T., 2010, A new species of Cloudina from the terminal Ediacaran of Spain: Precambrian Research, v. 176, p. 110.CrossRefGoogle Scholar
Cortijo, I., Cai, Y., Hua, H., Schiffbauer, J.D., and Xiao, S., 2015a, Life history and autecology of an Ediacaran index fossil: development and dispersal of Cloudina : Gondwana Research, v. 28, p. 419424.CrossRefGoogle Scholar
Cortijo, I., Martí Mus, M., Jensen, S., and Palacios, T., 2015b, Late Ediacaran skeletal body fossil assemblage from the Navalpino anticline, central Spain: Precambrian Research, v. 267, p. 186195.CrossRefGoogle Scholar
Ding, Q., Xing, Y., Wang, Z., Yin, C., and Gao, L., 1993, Tubular and trace fossils from the Sinian Dengying Formation in the Miaohe-Liantuo area, Hubei Province: Geological Review, v. 39, p. 118123.Google Scholar
Gaucher, C., and Germs, G.J.B., 2009, Skeletonised metazoans and protists, in Gaucher, C., Sial, A.N., Halverson, G.P., and Frimmel, H.E., eds., Neoproterozoic–Cambrian Tectonics, Global Change and Evolution: A Focus on Southwestern Gondwana: Amsterdam, Elsevier, p. 327338.CrossRefGoogle Scholar
Gaucher, C., Boggiani, P., Sprechmann, P., Sial, A., and Fairchild, T., 2003, Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumbá groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications: Precambrian Research, v. 120, p. 241278.CrossRefGoogle Scholar
Germs, G., 1972, New shelly fossils from Nama Group, South West Africa: American Journal of Science, v. 272, p. 752761.CrossRefGoogle Scholar
Germs, G.J.B., 1983, Implications of a sedimentary facies and depositional environmental analysis of the Nama Group in South West Africa/Namibia: Geological Society of South Africa, v. 11, p. 89114.Google Scholar
Germs, G.J.B., 1995, The Neoproterozoic of southwestern Africa, with emphasis on platform stratigraphy and paleontology: Precambrian Research, v. 73, p. 137151.CrossRefGoogle Scholar
Glaessner, M., 1976, Early Phanerozoic annelid worms and their geological and biological significance: Journal of the Geological Society, v. 132, p. 259275.CrossRefGoogle Scholar
Grant, S., 1990, Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic: American Journal of Science, v. 290-A, p. 261294.Google ScholarPubMed
Grotzinger, J.P., Bowring, S.A., Saylor, B.Z., and Kaufman, A.J., 1995, Biostratigraphic and geochronologic constraints on early animal evolution: Science, v. 270, p. 598604.CrossRefGoogle Scholar
Grotzinger, J.P., Watters, W.A., and Knoll, A.H., 2000, Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia: Paleobiology, v. 26, p. 334359.2.0.CO;2>CrossRefGoogle Scholar
Hagadorn, J.W., and Waggoner, B., 2000, Ediacaran fossils from the southwestern Great Basin, United States: Journal of Paleontology, v. 74, p. 349359.2.0.CO;2>CrossRefGoogle Scholar
Hahn, G., and Pflug, H., 1985, Die Cloudinidae n. fam., Kalk-Röhren aus dem Vendium und Unter-Kambrium: Senckenbergiana Lethaea, v. 65, p. 413431.Google Scholar
Han, J., Cai, Y., Schiffbauer, J.D., Hua, H., Wang, X., Yang, X., Uesugi, K., Komiya, T., and Sun, J., 2017, A Cloudina-like fossil with evidence of asexual reproduction from the lowest Cambrian, South China: Geological Magazine, v. 154, p. 12941305.CrossRefGoogle Scholar
Hodgin, E.B., Nelson, L.L., Wall, C.J., Barrón-Díaz, A.J., Webb, L.C., Schmitz, M.D., Fike, D.A., Hagadorn, J.W., and Smith, E.F., 2020, A link between rift-related volcanism and end-Ediacaran extinction? Integrated chemostratigraphy, biostratigraphy, and U-Pb geochronology from Sonora, Mexico: Geology, v. 49, p. 115119.CrossRefGoogle Scholar
Hofmann, H.J., and Mountjoy, E.W., 2001, Namacalathus-Cloudina assemblage in Neoproterozoic Miette Group (Byng Formation), British Columbia: Canada's oldest shelly fossils: Geology, v. 29, p. 10911094.Google Scholar
Howell, B.F., 1943, Hamulus, “Falcula,” and Other Cretaceous Tubicola of New Jersey: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 95, p. 139166.Google Scholar
Hua, H., Zhang, L., Zhang, Z., and Wang, J., 2000a, New fossil evidences from latest Neoproterozoic Gaojiashan Biota, South Shaanxi: Acta Palaeontologica Sinica, v. 39, p. 381390. [in Chinese with English summary].Google Scholar
Hua, H., Zhang, L., Zhang, Z., and Wang, J., 2000b, Fossil evidences of latest Neoproterozoic Gaojiashan Biota and their characteristics: Acta Palaeontologica Sinica, v. 39, p. 507515.Google Scholar
Hua, H., Pratt, B.R., and Zhang, L., 2003a, Borings in Cloudina shells: complex predator-prey dynamics in the terminal Neoproterozoic: Palaios, v. 18, p. 454459.2.0.CO;2>CrossRefGoogle Scholar
Hua, H., Zhang, L., and Chen, Z., 2003b, Microbially mediated phosphatization in the late Sinian skeletal fossils, southern Shaanxi: Acta Palaeontologica Sinica, v. 42, p. 189199. [in Chinese with English summary].Google Scholar
Hua, H., Chen, Z., Yuan, X., Zhang, L., and Xiao, S., 2005, Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina: Geology, v. 33, p. 277280.CrossRefGoogle Scholar
Hua, H., Chen, Z., and Yuan, X., 2007, The advent of mineralized skeletons in Neoproterozoic Metazoa—new fossil evidence from the Gaojiashan Fauna: Geological Journal, v. 42, p. 263279.Google Scholar
ICZN, 1999, International Code of Zoological Nomenclature, 4th Edition: London, International Trust for Zoological Nomenclature, 306 p.Google Scholar
Kontorovich, A.E., Varlamov, A.I., Grazhdankin, D.V., Karlova, G.A., Klets, A.G., et al. , 2008, A section of Vendian in the east of West Siberian Plate (based on data from the Borehole Vostok 3): Russian Geology and Geophysics, v. 49, p. 932939.CrossRefGoogle Scholar
Li, Y., Ding, L., Zhang, l., Dong, J., and Chen, H., 1992, Description of fossils, in Ding, L., Zhang, l., Li, Y., and Dong, J., eds., The study of the late Sinian–early Cambrian biota from the northern margin of Yangtze Platform: Beijing, Scientific and Technical Documents Publishing House, p. 80112.Google Scholar
Liang, D., Cai, Y., Nolan, M., and Xiao, S., 2020, The terminal Ediacaran tubular fossil Cloudina in the Yangtze Gorges area of South China: Precambrian Research, v. 351, 105931. https://doi.org/10.1016/j.precamres.2020.105931.CrossRefGoogle Scholar
Lin, S., Zhang, Y., Tao, X., Wang, M., and Zhang, L., 1986, Body and trace fossils of Metazoa and algal macrofossils from the upper Sinian Gaojiashan Formation in southern Shaanxi: Geology of Shaanxi, v. 4, p. 917.Google Scholar
Linnemann, U., Ovtcharova, M., Schaltegger, U., Gärtner, A., Hautmann, M., et al. , 2019, New high-resolution age data from the Ediacaran-Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion: Terra Nova, v. 31, p. 4958.CrossRefGoogle Scholar
McMenamin, M.A.S., 1985, Basal Cambrian small shelly fossils from the La Ciénega Formation, northwestern Sonora, Mexico: Journal of Paleontology, v. 59, p. 14141425.Google Scholar
Mehra, A., and Maloof, A., 2018, Multiscale approach reveals that Cloudina aggregates are detritus and not in situ reef constructions: Proceedings of the National academy of Sciences, v. 115, p. E2519E2527.CrossRefGoogle Scholar
Min, X., Hong, H., Yaoping, C., and Bo, S., 2019a, Asexual reproduction of tubular fossils in the terminal Neoproterozoic Dengying Formation, South China: Precambrian Research, v. 322, p. 1823.CrossRefGoogle Scholar
Min, X., Hua, H., Liu, L., Sun, B., Cui, Z., and Jiang, T., 2019b, Phosphatized Epiphyton from the terminal Neoproterozoic and its significance: Precambrian Research, v. 331, 105358. https://doi.org/10.1016/j.precamres.2019.105358.CrossRefGoogle Scholar
Mount, J.F., Gevirtzman, D.A., and Signer, P.W. III, 1983, Precambrian–Cambrian transition problem in western North America: Part I. Tommotian fauna in the southwestern Great Basin and its implications for the base of the Cambrian System: Geology, v. 11, p. 224226.2.0.CO;2>CrossRefGoogle Scholar
Pacheco, M.L., Leme, J., and Machado, A., 2011, Taphonomic analysis and geometric modelling for the reconstitution of the Ediacaran metazoan Corumbella werneri Hahn et al. 1982 (Tamengo Formation, Corumbá Basin, Brazil): Journal of Taphonomy, v. 9, p. 269283.Google Scholar
Penny, A.M., Wood, R., Curtis, A., Bowyer, F., Tostevin, R., and Hoffman, K.H., 2014, Ediacaran metazoan reefs from the Nama Group, Namibia: Science, v. 344, p. 15041506.CrossRefGoogle ScholarPubMed
Penny, A.M., Wood, R.A., Zhuravlev, A.Y., Curtis, A., Bowyer, F., and Tostevin, R., 2017, Intraspecific variation in an Ediacaran skeletal metazoan: Namacalathus from the Nama Group, Namibia : Geobiology, v. 15, p. 8193.CrossRefGoogle Scholar
Pruss, S.B., Blättler, C.L., Macdonald, F.A., and Higgins, J.A., 2018, Calcium isotope evidence that the earliest metazoan biomineralizers formed aragonite shells: Geology, v. 46, p. 763766.CrossRefGoogle Scholar
Schiffbauer, J.D., Selly, T., Jacquet, S.M., Merz, R.A., Nelson, L.L., Strange, M.A., Cai, Y., and Smith, E.F., 2020, Discovery of bilaterian-type through-guts in cloudinomorphs from the terminal Ediacaran Period: Nature Communications, v. 11, 205. https://doi.org/10.1038/s41467-019-13882-z.CrossRefGoogle ScholarPubMed
Selly, T., Schiffbauer, J.D., Jacquet, S.M., Smith, E.F., Nelson, L.L., et al. , 2020, A new cloudinid fossil assemblage from the terminal Ediacaran of Nevada, USA: Journal of Systematic Palaeontology, v. 18, p. 357379.CrossRefGoogle Scholar
Shore, A., and Wood, R., 2021, Environmental and diagenetic controls on the morphology and calcification of the Ediacaran metazoan Cloudina: Scientific Reports, v. 11, 12341. https://doi.org/10.1038/s41598-021-90768-5.CrossRefGoogle ScholarPubMed
Shore, A., Wood, R., Curtis, A., and Bowyer, F., 2020, Multiple branching and attachment structures in cloudinomorphs, Nama Group, Namibia: Geology, v. 48, p. 877881.CrossRefGoogle Scholar
Signor, P.W., McMenamin, M.A.S., Gevirtzman, D.A., and Mount, J.F., 1983, Two new pre-trilobite faunas from western North America: Nature, v. 303, p. 415418.CrossRefGoogle Scholar
Signor, P.W., Mount, J.F., and Onken, B.R., 1987, A pre-trilobite shelly fauna from the White-Inyo region of eastern California and western Nevada: Journal of Paleontology, v. 61, p. 425438.CrossRefGoogle Scholar
Smith, E.F., Nelson, L.L., Strange, M.A., Eyster, A.E., Rowland, S.M., Schrag, D.P., and Macdonald, F.A., 2016, The end of the Ediacaran: two new exceptionally preserved body fossil assemblages from Mount Dunfee, Nevada, USA: Geology, v. 44, p. 911914.Google Scholar
Smith, E.F., Nelson, L.L., Tweedt, S.M., Zeng, H., and Workman, J.B., 2017, A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link: Proceedings of the Royal Society B: Biological Sciences, v. 284, 20170934. https://doi.org/10.1098/rspb.2017.0934.Google ScholarPubMed
Sokolov, B.S., 1965, The most ancient early Cambrian deposits and sabelliditids, in Sokolov, B.S., ed., All-Union Symposium on Paleontology of Precambrian and Early Cambrian: Novosibirsk, Akad Nauk SSSR, p. 7891. [in Russian]Google Scholar
Sour-Tovar, F., Hagadorn, J.W., and Huitrón-Rubio, T., 2007, Ediacaran and Cambrian index fossils from Sonora, Mexico: Palaeontology, v. 50, p. 169175.CrossRefGoogle Scholar
Steiner, M., Li, G., Qian, Y., Zhu, M., and Erdtmann, B.D., 2007, Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 254, p. 6799.CrossRefGoogle Scholar
Sun, B., Hua, H., and Cai, Y., 2012, Morphology and palaeoecology of the late Ediacaran tubular fossil Sinotubulites: Acta Palaeontologica Sinica, v. 51, p. 107113.Google Scholar
Taylor, M.E., 1966, Precambrian mollusc-like fossils from Inyo County, California: Science, v. 153, p. 198201.CrossRefGoogle ScholarPubMed
Terleev, A.A., Postnikov, A.A., Tokarev, D.A., Sosnovskaya, O.V., and Bagmet, G.N., 2011, Cloudina-Namacalathus-Korilophyton association in the Vendian of the Altay-Sayan Foldbelt (Siberia), in Neoproterozoic Sedimentary Basins: Stratigraphy, Feodynamics and Petroleum Potential: Proceedings of the International Conference (Novosibirsk, 30 July–02 August, 2011), p. 9698.Google Scholar
Torsvik, T.H., and Cocks, L.R.M., 2013, New global palaeogeographical reconstructions for the early Palaeozoic and their generation, in Harper, D.A.T., and Servais, T., eds., Early Palaeozoic Biogeography and Palaeogeography: Geological Society, London, Memoirs, v. 38, p. 524.Google Scholar
Vinn, O., and Zatoń, M., 2012, Inconsistencies in proposed annelid affinities of early biomineralized organism Cloudina (Ediacaran): structural and ontogenetic evidences: Carnets de Géologie, v. 2012/03 (CG2012_A03), p. 3947.Google Scholar
Walde, D.H.G., do Carmo, D.A., Guimarães, E.M., Vieira, L.C., Erdtmann, B.-D., Sanchez, E.A.M, Adorno, R.R., and Tobias, T.C., 2015, New aspects of Neoproterozoic–Cambrian transition in the Corumbá region (state of Mato Grosso do Sul, Brazil): Annales de Paléontologie, v. 101, p. 213224.CrossRefGoogle Scholar
Walde, D.H.-G., Weber, B., Erdtmann, B.-D., and Steiner, M., 2019, Taphonomy of Corumbella werneri from the Ediacaran of Brazil: sinotubulitid tube or conulariid test? : Alcheringa, v. 43, p. 335350.CrossRefGoogle Scholar
Warren, L.V., Fairchild, T.R., Gaucher, C., Boggiani, P.C., Poiré, D.G., Anelli, L.E., and Inchausti, J.C.G., 2011, Corumbella and in situ Cloudina in association with thrombolites in the Ediacaran Itapucumi Group, Paraguay: Terra Nova, v. 23, p. 382389.CrossRefGoogle Scholar
Warren, L., Pacheco, M., Fairchild, T.R., Simões, M., Riccomini, C., Boggiani, P.C., and Cáceres, A.A., 2012, The dawn of animal skeletogenesis: ultrastructural analysis of the Ediacaran metazoan Corumbella werneri : Geology, v. 40, p. 691694.CrossRefGoogle Scholar
Warren, L.V., Quaglio, F., Riccomini, C., Simões, M.G., Poiré, D.G., Stríkis, N.M., Anelli, L.E., and Strikis, P.C., 2014, The puzzle assembled: Ediacaran guide fossil Cloudina reveals an old proto-Gondwana seaway: Geology, v. 42, p. 391394.CrossRefGoogle Scholar
Warren, L.V., Quaglio, F., Simões, M.G., Gaucher, C., Riccomini, C., Poiré, D.G., Freitas, B.T., Boggiani, P.C., and Sial, A.N., 2017, Cloudina-Corumbella-Namacalathus association from the Itapucumi Group, Paraguay: increasing ecosystem complexity and tiering at the end of the Ediacaran: Precambrian Research, v. 298, p. 7987.CrossRefGoogle Scholar
Wood, R., 2018, Exploring the drivers of early biomineralization: Emerging Topics in Life Sciences, v. 2, p. 201212.Google ScholarPubMed
Wood, R., Curtis, A., Penny, A., Zhuravlev, A.Y., Curtis-Walcott, S., Iipinge, S., and Bowyer, F., 2017a, Flexible and responsive growth strategy of the Ediacaran skeletal Cloudina from the Nama Group, Namibia: Geology, v. 45, p. 259262.CrossRefGoogle Scholar
Wood, R., Ivantsov, A.Y., and Zhuravlev, A.Y., 2017b, First macrobiota biomineralization was environmentally triggered: Proceedings of the Royal Society B : Biological Sciences, v. 284, 20170059. https://doi.org/10.1098/rspb.2017.0059.Google Scholar
Wood, R.A., Zhuravlev, A.Y., Sukhov, S.S., Zhu, M., and Zhao, F., 2017c, Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform: Geology, v. 45, p. 2730.CrossRefGoogle Scholar
Xiao, S., Narbonne, G.M., Zhou, C., Laflamme, M., Grazhdankin, D.V., Moczydlowska-Vidal, M., and Cui, H., 2016, Toward an Ediacaran time scale: problems, protocols, and prospects : Episodes, v. 39, p. 540555.CrossRefGoogle Scholar
Yang, B., Steiner, M., Zhu, M., Li, G., Liu, J., and Liu, P., 2016, Transitional Ediacaran–Cambrian small skeletal fossil assemblages from South China and Kazakhstan: implications for chronostratigraphy and metazoan evolution : Precambrian Research, v. 285, p. 202215.CrossRefGoogle Scholar
Yang, B., Shang, X., Steiner, M., and Liu, P., 2020a, Ediacaran tubular fossils from the Shennongjia area, Hubei Province and their stratigraphic significance: Journal of Stratigraphy, v. 44, p. 448454. [in Chinese with English abstract]Google Scholar
Yang, B., Steiner, M., Schiffbauer, J.D., Selly, T., Wu, X., Zhang, C. and Liu, P., 2020b, Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non-biomineralized annelids: Scientific Reports, v. 10, 535. https://doi.org/10.1038/s41598-019-56317-x.Google Scholar
Yochelson, E.L., and Herrera, H.E., 1974, Un fossil enigmatico del Cambrico Inferior de Argentina: Ameghiniana, v. 11, p. 283294.Google Scholar
Yochelson, E.L., and Stump, E., 1977, Discovery of early Cambrian fossils at Taylor Nunatak, Antarctica: Journal of Paleontology, p. 872875.Google Scholar
Zaine, M.F., and Fairchild, T.R., 1987, Novas considerações sobre os fósseis da Formação Tamengo, Grupo Corumbá, SW do Brasil: X Congresso Brasileiro de Paleontologia, Rio de Janeiro, 19–25 Juhlo, 1987, p. 797807.Google Scholar
Zhang, L., 1986, A discovery and preliminary study of the late stage of late Gaojiashan biota from Sinian in Ningqiang County, Shaanxi: Bulletin of the Xi' an Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, v. 13, p. 6788. [in Chinese with English abstract]Google Scholar
Zhang, L., and Hua, H., 2000, Late Sinian tubular shell fossils and their significance: Acta Palaeontologica Sinica, v. 39, p. 326333. [in Chinese with English summary]Google Scholar
Zhu, M., Zhuravlev, A.Y., Wood, R.A., Zhao, F., and Sukhov, S.S., 2017, A deep root for the Cambrian explosion: implications of new bio- and chemostratigraphy from the Siberian Platform : Geology, v. 45, p. 459462.CrossRefGoogle Scholar
Zhuravlev, A.Y., Linan, E., Vintaned, J.A.G., Debrenne, F., and Fedorov, A.B., 2012, New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain: Acta Palaeontologica Polonica, v. 57, p. 205224.CrossRefGoogle Scholar