Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T18:25:35.385Z Has data issue: false hasContentIssue false

Taxonomic affinities and paleogeography of Stromatomorpha californica Smith, a distinctive Upper Triassic reef-adapted demosponge

Published online by Cambridge University Press:  14 July 2015

B. Senowbari-Daryan
Affiliation:
1Institute of Paleontology, University of Erlangen-Nürnberg, Loewenichstrasse 28, D-91054 Erlangen, Germany,
G. D. Stanley Jr.
Affiliation:
2The University of Montana Paleontology Center, Missoula 59812,

Abstract

Stromatomorpha californica Smith is a massive, calcified, tropical to subtropical organism of the Late Triassic that produced small biostromes and contributed in building some reefs. It comes from the displaced terranes of Cordilleran North America (Eastern Klamath terrane, Alexander terrane, and Wrangellia). This shallow-water organism formed small laminar masses and sometimes patch reefs. It was first referred to the order Spongiomorphidae but was considered to be a coral. Other affinities that have been proposed include hydrozoan, stomatoporoid, sclerosponge, and chambered sponge. Part of the problem was diagenesis that resulted in dissolution of the siliceous spicules and/or replaced them with calcite. Well-preserved dendroclone spicules found during study of newly discovered specimens necessitate an assignment of Stromatomorpha californica to the demosponge order Orchocladina Rauff. Restudy of examples from the Northern Calcareous Alps extends the distribution of this species to the Tethys, where it was an important secondary framework builder in Upper Triassic (Norian-Rhaetian) reef complexes. Revisions of Stromatomorpha californica produce much wider pantropical distribution, mirroring paleogeographic patterns revealed for other tropical Triassic taxa. Review of Liassic material from the Jurassic of Morocco, previously assigned to Stromatomorpha californica Smith var. columnaris Le Maitre, cannot be sustained. Species previously included in Stromatomorpha are: S. stylifera Frech (type species, Rhaetian), S. actinostromoides Boiko (Norian), S. californica Smith (Norian), S. concescui Balters (Ladinian-Carnian), S. pamirica Boiko (Norian), S. rhaetica Kühn (Rhaetian), S. stromatoporoides Frech, and S. tenuiramosa Boiko (Norian). Stromatomorpha rhaetica Kühn described from the Rhaetian of Vorarlberg, Austria shows no major difference from S. californica. An example described as S. oncescui Balters from the Ladinian-Carnian of the Rarau Mountains, Romania, is very similar to S. californica in exhibiting similar spicule types. However, because of the greater distance between individual pillars, horizontal layers, and the older age, S. oncescui is retained as a separate species. The net-like and regular skeleton of Spongiomorpha sanpozanensis Yabe and Sugiyama, from the Upper Triassic of Sambosan (Tosa, Japan), suggests a closer alliance with Stromatomorpha, and this taxon possibly could be the same as S. californica.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alloiteau, J. 1952. Classe des Hydrozoaires, p. 377398. In Piveteau, J. (ed.), Traité de Paléontologie, 1.Google Scholar
Bakalow, P. N. 1910. Nyekolko novi Triaski Stromatoporoidea. Jahrbuch University Sofia, 12:110.Google Scholar
Balters, A. 1973. A new Spongiomorphidae, Stromatomorpha oncescui n. sp., from the allochthonous Triassic of the Rarau Mountains - Romania. Revue Roumaine Geologie, Geophysique, 17(2):159163.Google Scholar
Bhargava, O. N. and Bassi, U. K. 1985. Upper Triassic coral knoll reefs: Middle Norian, Spiti-Kinnaur, Himachal Himalaya, India. Facies, 12:219242.CrossRefGoogle Scholar
Boiko, E. V. 1972. Late Triassic spongiomorphids (Hydrozoa) of the southeastern Pamirs. Akademia Science, 2:159165(20-25). (In Russian)Google Scholar
Boiko, E. V. 1979. Pozdnetriascvye Hydrozoa yugo-vostochnogo Pamira. Izd-vo Donish, Dushanbe, 113 p., 28 pls. (In Russian)Google Scholar
Bronn, H. 1830. Über die Muschel-Versteinerungen des Süd-Deuschen Steinsalzgebirges, welche bisher unter dem Namen Pectines salinarius zusammenbegriffen wurden. Jahrbuch für Mineralogie, Geognosie, Geologie, und Petrefaktenkunde, 1:279285.Google Scholar
Caruthers, A. H. and Stanley, G. D. Jr. 2008. Late Triassic silicified shallow-water corals and other marine fossils from Wrangellia and the Alexander terrane, Alaska and Vancouver Island, British Columbia. Geological Society of America Special Paper, 442:49177.Google Scholar
Cook, A. 2002. “Class Stromatoporoida” Nicholson & Murie, 1878: Stromatoporoides, p. 6970. In Hooper, J. N. and Van Soest, R. W. M. (eds.), System Porifera. A Guide to the Classification of Sponges. Kluwer Academic/Plenum Publishers, New York.Google Scholar
Cooper, G. A. 1942. New general North American brachiopods. Journal of the Washington Academy of Science, 32:228235.Google Scholar
De-Yua, D. and Bao-Yu, W. 1985. Cnidarian fauna from the Mesozoic of south Xinjiang. Acta Paleontologica Sinica, 24(4):449452. (Chinese with English summary)Google Scholar
Doronov, V. I., Gazdzicki, A., and Melnikova, G. 1982. Die triadischen Riffe im südöstlichen Pamir. Facies, 6:107128.CrossRefGoogle Scholar
Doronov, V. I. and Melnikova, G. 1994. Facies zonation of the Triassic Basin in the SE Pamirs. Courier Forschungsinstitut Senckenberg, 172:275282Google Scholar
Dullo, W.-C. 1980. Paläontologie, Fazies und Geochemie der Dachstein-Kalke (Ober-Trias) im südwestlichen Gesäuse, Steiermark, Österreich. Facies, 2:55122.CrossRefGoogle Scholar
Finks, R. M., Reid, R. E. H., and Rigby, J. K. 2004. Treatise on Invertebrate Paleontology, Part E, Porifera, Vol. 3, Revised. Geological Society of America and University of Kansas Press, Lawrence, 872 p.Google Scholar
Flügel, E. 1969. Catalogus Fossilium Austriae. Österreichische Akademie der Wissenschaften, Heft, IVb:174.Google Scholar
Flügel, E. 1981. Paleoecology and facies of Upper Triassic reefs in the Northern Calcareous Alps. SEPM Special Publication, 30:291359.Google Scholar
Flügel, E. and Sy, E. 1959. Die Hydrozoen der Trias. Neues Jahrbuch der Geologie und Paläontologie, Abhandlungen, 109(1):1108.Google Scholar
Frech, F. 1890. Die Korallen der Trias. I. Die Korallen der juvavischen Triasprovinz. Palaeontographica, 37:1116.Google Scholar
Gautret, P., Ezzoubair, F., and Cuif, J.-P. 1992. Recherche sur les affinités des Spongiomorphidae Frech, 1890. 1 - Charactéristiques microstructures et minéralogiques de Spongiomorpha acyclica Frech, 1890. Geobios, 25(3):345355.CrossRefGoogle Scholar
Hartman, W. D. and Goreau, T. F. 1966. Ceratoporella, a living sponge with stromatoporoid affinities. American Zoologist, 6(4):262.Google Scholar
Hartman, W. D. and Goreau, T. F. 1970. Jamaican coralline sponges: their morphology, ecology and fossil relatives, p. 205243. In Frey, W. G. (ed.), The Biology of the Porifera. Zoological Society of London, Symposium 25.Google Scholar
Hill, D. and Wells, J. W. 1956. Hydroida and Spongiomorphida, p. F81. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part F, Coelentrata. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Hooper, J. N., Van Zoest, R. W. M., and Debrenne, F. 2002. Phylum Porifera Grant, 1836, p. 913. In Hooper, J. N. and Van Soest, R. W. M. (eds.), System Porifera. A Guide to the Classification of Sponges. Kluwer Academic/Plenum Publishers, New York.Google Scholar
Irwin, W. P. 1981. Tectonic accretion of the Klamath Mountains, p. 3049. In Ernst, W. G. (ed.), The Geotectonic Development of California, Ruby Volume1. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
Kühn, O. 1942. Zur Kenntnis des Rhät von Vorarlberg. Mitteilungen der alpenländischen geologischen Vereinigung (Geologische Gesellschaft Wien), 33:111157.Google Scholar
Le Maitre, D. 1935. Etudes paleontologiques sur le Lias du Maroc. Spongiomorphides et algues. Maroc Service des Mines et de la Carte Géologique, Notes et Mémories, 34:158.Google Scholar
Le Maitre, D. 1937. Nouvelles recherches sur les Spongiomorphides et les algues du Lias et de L'Oolithe Inférieure. Études Paléontologiques sur le Lias du Maroc, 43:125.Google Scholar
Muller, S. W. and Ferguson, H. G. 1936. Triassic and Jurassic formations of west central Nevada. Geological Society of America Bulletin, 47:241256.CrossRefGoogle Scholar
Nicol, S. A. 1987. A down-slope Upper Triassic reef mound: Aflenz Limestone, Hochschwalb Mountains, Northern Calcareous Alps. Facies, 16:2336.CrossRefGoogle Scholar
Ott, E. 1967. Segmentierte Kalkschwämme (Sphinctozoan) aus der alpinen Mitteltrias und ihre Bedeutung als Riffbildner im Wettersteinkalk. Bayerscher Verlag der Akademie der Wissenchaften. Mathematisch-Naturwissenschaftliche Klasse, Abhandlungen, Neye Folge, Heft, 131:196.Google Scholar
Rauff, H. 1895. Paleospongiologie. Zweiter Theil. Fortsetzung. Spongien des Silurs. Palaeontographica, 43:223272.Google Scholar
Reitner, J. and Wörheide, G. 2002. Non-lithistid fossil Demospongiae - Origins of their palaeobiodiversity and highlights in history of preservation, p. 5268. In Hooper, J. N. A. and Van Soest, R. W. M. (eds.), Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic/Plenum Publishers, New York.CrossRefGoogle Scholar
Reuss, A. E. 1865. Zwei neue Anthozoen aus den Hallstätter Schichten. Sitzungsberichte der Akademie der Wissenschaften Wien, mathematisch-naturwissenschaftliche Klasse, 51:381395.Google Scholar
Rigby, J. K. and Webby, B. D. 1988. Late Ordovician sponges from the Malongulli Formation of central New South Wales, Australia. Palaeontographica Americana, 56:1147.Google Scholar
Sadati, S.-M. 1981. Die Höhe Wand: Ein obertriadisches Lagunen-Riff am Ostende der Nördlichen Kalkalpen (Niederösterreich). Facies, 5:191264.CrossRefGoogle Scholar
Sandy, M. R. and Stanley, G. D. Jr. 1993. Late Triassic brachiopods from the Luning Formation, Nevada, and their palaeobiogeographical significance. Palaeontology, 36(2):439480.Google Scholar
Sarti, M., Russo, A., and Bosellini, F. 1992. Rhaetian strata, Wombat plateau: analysis of fossil communities as a key to paleoenviromental change. Proceedings of the Ocean Drilling Program, Scientific Results, 122:181195.Google Scholar
Schäfer, P. 1979. Fazielle Entwicklung und palökologische Zonierung zweier obertriadischer Riffstrukturen in den Nördlichen Kalkalpen (“Oberrhät”-Riff-Kalke, Salzburg). Facies, 1:3245.CrossRefGoogle Scholar
Schroeder, R. 1984. Revision von Stylothalamia columnaris (Le Maitre) 1935 (Sphinctozoa, Porifera) aus dem Lias von Marokko. Paläontologische Zeitschrift, 58(1/2):3339.Google Scholar
Schroeder, R. and Willems, H. 1983. Chaetetiden, Sphintozoen und Stromatoporoiden aus dem Caniego-Kalk (Ober-Alb) des Valle de Mena (Prov. Burgos, N-Spanien). Senckenbergiana lethaea, 64(2/4):337362.Google Scholar
Senowbari-Daryan, B. 1980. Fazielle und paläontologische Untersuchungen in oberrätischen Riffen (Feichtenstein- und Gruberriff bei Hintersee, Salzburg, Nördliche Kalkalpen). Facies, 3:1237.CrossRefGoogle Scholar
Senowbari-Daryan, B. 1990. Die systematische Stellung der thalamiden Schwämme und ihre Bedeutung in der Erdgeschichte. Münchner Geowissenschaftliche Abhandlungen, A, 21:1126.Google Scholar
Senowbari-Daryan, B. and Stanley, G. D. Jr. 1992. Late Triassic thalamid sponges from Nevada. Journal of Paleontology, 66(2):183193.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology, 363:1560.Google Scholar
Silberling, N., Grant-Mackie, J. A., and Nichols, K. M. 1997. The Late Triassic bivalve Monotis in accreted terranes of Alaska. U.S. Geological Survey Bulletin, 2151:121, 11 pls.Google Scholar
Smith, J. P. 1927. Upper Triassic marine invertebrate fauna of North America. U.S. Geological Survey Professional Paper, 141:1262.Google Scholar
Soja, C. M. 1996. Island-arc carbonates: characterization and recognition in the ancient geologic record. Earth-Science Reviews, 41:3165.CrossRefGoogle Scholar
Stanley, G. D. Jr. 1979. Paleoecology, structure, and distribution of Triassic coral buildups in Western North America. The University of Kansas Paleontological Contribution, 65:158.Google Scholar
Stanley, G. D. Jr. 1994. Late Paleozoic and Early Mesozoic reef-building organisms and paleogeography: the Tethyan-North American connection. Courier Forschungsinstitut Senkenberg, 172:6975.Google Scholar
Stearn, C. W., Webby, B. D., Nestor, H., and Stock, C. W. 1999. Revised classification and terminology of Palaeozoic stromatoporoids. Acta Palaeontologica Polonica, 44(1).170.Google Scholar
Turnšek, D., Buser, S., and Ogorelec, B. 1987. Upper Carnian reef limestone in clastic beds at Perbla near Tolmin (NW Yugoslavia). Razparave IV. Razreda SAZU, 27(3):3764.Google Scholar
Waagen, W. and Wentzel, J. 1887. In Waagen, W., Salt Range Fossils VI. Productus Limestone fossils. Memoires Geological Survey India, 13:913963.Google Scholar
Yabe, H. and Sugiyama, T. 1931. On some spongiomorphoid corals from the Jurassic of Japan. Tohoku Imperial University Science Reports, ser. 2, 14(2a):103105.Google Scholar
Zankl, H. 1969. Der Hohe Göll. Aufbau und Lebensbild eines Dachsteinkalk-riffes in der Obertrias der nördlichen Kalkalpen. Abhandlungen der Senckenbergischen naturforschenden Gesellschaft, 519:1123.Google Scholar