Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T16:55:03.202Z Has data issue: false hasContentIssue false

Tabulaconus Handfield: microstructure and its implication in the taxonomy of primitive corals

Published online by Cambridge University Press:  14 July 2015

Francoise M. Debrenne
Affiliation:
1CNRS-ER 154, Institut de Paléontologie, 75005 Paris, France
Roland A. Gangloff
Affiliation:
2Department of Earth Science, Merritt College, Oakland, California 94619
Jean G. Lafuste
Affiliation:
1CNRS-ER 154, Institut de Paléontologie, 75005 Paris, France

Abstract

Numerous specimens of Tabulaconus Handfield, 1969, have been collected in carbonate buildups within the Adams Argillite (Early Cambrian, Tatonduk area, Alaska). The wall structure of this form has been investigated, along with contemporaneous archaeocyaths and algae, through the use of polished ultra-thin sections (2–3 μm thick) and scanning electron microscopy. The results of this microstructural comparison indicate that despite diagenetic alteration Tabulaconus has a skeleton that is unlike any presently known and is quite distinct from associated algae or archaeocyaths. It is more elaborate than that found in the archaeocyaths but has not reached the stage of complexity seen in the primitive coral Cothonion Jell and Jell, 1976. The presence of some elongated units may represent an initial step towards the fibrous skeleton typical of Paleozoic corals.

This study shows that even though diagenesis alters the original microstructure of calcareous skeletons, the resultant fabrics and detailed structures can be useful in systematic descriptions.

Tabulaconus is removed from the Gastroconidae Kordae due to the presence of rudimentary septa and constitution of the tabularium. A number of species assigned to the genus Bačatocyathus Vologdin and included within the Archaeocyatha appear to be examples of Tabulaconus or very close relatives. An emended description of Tabulaconus kordae, the type species, is proposed.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brabb, E. E. 1967. Stratigraphy of the Cambrian and Ordovician rocks of east-central Alaska. U.S. Geological Survey Professional Paper 559-A, 30 p.CrossRefGoogle Scholar
Brabb, E. E. and Churkin, M. Jr. 1969. Geologic map of the Charley River Quadrangle, east-central Alaska. U.S. Geological Survey Miscellaneous Investigations Map I-573.Google Scholar
Cuif, J. P. et al. 1979. Comparaison de la microstructure du squelette carbonate non spiculaire d'eponges actuel les et fossiles. Colloques internationaux du CNRS, no 291. Biologie des Spongiaires, Centre National de la Recherche Scientifique ed., Paris, 1979:459465.Google Scholar
Debrenne, F. and Lafuste, J. G. 1977. Observations en microscopie optique et électronique des microstructures d'organismes du Cambrien inférieur de l'Alaska. Rennes 1977: 190Google Scholar
Handheld, R. C. 1969. Early Cambrian corallike fossils from the northern Cordillera of western Canada. Canadian Journal of Earth Sciences, 6(4):782785.CrossRefGoogle Scholar
Jell, P. A. and Jell, J. S. 1976. Early Middle Cambrian corals from western New South Wales. Alcheringa, 1:181195.CrossRefGoogle Scholar
Kline, G. L. 1977. Earliest Cambrian (Tommotian) age of the Upper Tindir Group, east-central Alaska. Geological Society of America, Abstracts with Programs, 9(4):448.Google Scholar
Lafuste, J. G. 1970. Lames ultra-minces à faces polies. Procédé et application à la microstructure des Madréporaires fossiles. Comptes rendus de l'Académie des Sciences, Paris, 270:679681.Google Scholar
Lafuste, J. G. 1974. Amélioration de la technique des lames ultra-minces. Emploi 1) de l'oxyde de cerium, 2) du “cavity cleanser.” Comptes rendus sommaires de la Société Géologique de France, 16(2–3):5556.Google Scholar
Lafuste, J. G. 1981. Microstructure des Hétérocoralliaires (Cnidaires, Carbonifère). Annales de Paléontologie (Invertebrates), 67(1):112.Google Scholar
Lafuste, J. G. 1986. Polymorphisme des fibres du sclérenchyme chez les Tabulés (Cnidaria, Paléozotique. Comptes rendus de l'Académie des Sciences, Paris, 302:761763.Google Scholar
Lafuste, J. G. and Debrenne, F. 1970. Observations en lames ultra-minces de la microstructure d'Archéocyathes. Comptes rendus sommaires de la Société Géologique de France, 6:224225.Google Scholar
Lafuste, J. G. and Lafuste, J. G. 1977. Présence de deux types de microstructures chez Archaeocyathus atlanticus Billings (Cambrien inférieur, Labrador, Canada). Géobios, 10(1):103107.CrossRefGoogle Scholar
Lafuste, J. G. and Fischer, J. C. 1971. Sur la présence de fibres à bosselures chez les Chaetetida (Cnidaires) du Paléozoique et du Mésozoique. Comptes rendus de l'Académie des Sciences, Paris, 272:14881490.Google Scholar
Mertie, J. B. Jr. 1933. The Tatonduk-Nation District. U.S. Geological Survey Bulletin 836-E:347443.Google Scholar
Palmer, A. R. 1968. Cambrian trilobites of east-central Alaska. U.S. Geological Survey Professional Paper 559-B, 115 p.CrossRefGoogle Scholar
Rozanov, A. Yu., and Debrenne, F. 1974. Age of archaeocyathid assemblages. American Journal of Science, 274:833848.CrossRefGoogle Scholar
Scrutton, C. T. 1979. Early fossil cnidarians, p. 161207. In The Origin of Major Invertebrate Groups. Systematics Association Special Volume 12, Academic Press, London–New York.Google Scholar
Stelck, C. R. and Hedinger, A. S. 1975. Archaeocyathids and the Lower Cambrian continental shelf of the Canadian Cordillera. Canadian Journal of Earth Sciences, 12:20142020.CrossRefGoogle Scholar
Young, G. M. 1982. The late Proterozoic Tindir Group, east-central Alaska: evolution of a continental margin. Geological Society of America Bulletin, 93:759783.2.0.CO;2>CrossRefGoogle Scholar
Zhuravleva, I. T. 1963. Archaeocyatha of Siberia: One-walled Archaeocyatha (Orders Monocyathida and Rhizacyathida). Akademia Nauk SSSR, Institut Geologii and Geofiziki, Moscow, 139 p.Google Scholar