Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T03:52:16.581Z Has data issue: false hasContentIssue false

Stem parrots (Aves, Halcyornithidae) from the Green River Formation and a combined phylogeny of Pan-Psittaciformes

Published online by Cambridge University Press:  14 July 2015

Daniel T. Ksepka
Affiliation:
1Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Campus Box 8208, Raleigh, NC 27695, USA and Department of Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC 27695, USA,
Julia A. Clarke
Affiliation:
2Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, University Station C1100, Austin, TX 78712, USA,
Lance Grande
Affiliation:
3Division of Collections and Research, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA,

Abstract

A new species of stem parrot is reported from the early Eocene Fossil Butte Member of the Green River Formation. Well-preserved specimens including a complete skeleton and referred partial postcranial skeleton reveal new osteological details of the clade Halcyornithidae and expand the known diversity of the Green River avifauna. Cyrilavis colburnorum n. sp. shares key morphologies with the smaller Green River halcyornithid Cyrilavis olsoni. A combined phylogenetic analysis of Pan-Psittaciformes using 101 morphological characters and sequence data from three genes (RAG-1, Z-chromosomal spindlin and cytochrome b) supports the placement of 1) Halcyornithidae, 2) a small clade uniting the Messel fossil taxon Psittacopes lepidus and an unnamed London Clay species, and 3) Quercypsittidae on branches successively closer to the crown clade Psittaciformes. Analysis of the morphological dataset alone yields a similar strict consensus tree with slightly less resolution (one additional branch collapsed). Relationships within the crown clade agree well with recent hypotheses in supporting a basal divergence between the New Zealand Nestoridae and all other extant parrots, and a second major divergence between Cacatuidae and Psittacidae. When fossils are taken into account, many previously proposed synapomorphies of extant parrots are instead optimized as synapomorphies of more inclusive groups including both stem fossil taxa and living taxa. Fossil evidence is consistent with a more recent origin of crown clade Psittaciformes than predicted from divergence dating analyses, and supports environmental shifts and dispersal as key drivers in parrot biogeography.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Astuti, D., Azuma, N., Suzuki, H., and Higashi, S. 2006. Phylogenetic relationships within parrots (Psittacidae) inferred from mitochondrial cytochrome-b gene sequences. Zoological Science, 23: 191198.Google Scholar
Auber, L. 1957. The distribution of structural colours and unusual pigments in the class Aves. Ibis, 99: 463476.Google Scholar
Auber, L. and Mason, M. V. 1955. Structurally coloured pattern marks in the inner webs of flight feathers. Ibis, 97: 259265.Google Scholar
Barker, F. K., Barrowclough, G. F., and Groth, J. G. 2002. A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proceedings of the Royal Society B, 296: 295308.Google Scholar
Ballmann, P. 1969. Die Vögel aus der altburdigalen Spaltenfüllung von Wintershof (West) bei Eichstätt in Bayern. Zitteliana, 1: 561.Google Scholar
Beddard, F. E. 1898. The structure and classification of birds. Longmans, Green and Co., London.Google Scholar
Berman, S. L. and Raikow, R. J. 1982. The hindlimb musculature of the mousebirds (Coliiformes). Auk, 99: 4157.Google Scholar
Blondel, J. and Mourer-Chauviré, C. 1998. Evolution and history of the western Palaeartic avifauna. Trends in Ecology and Evolution, 13: 488492.Google Scholar
Boddaert, P. 1783. Table des Planches Enluminéez d'Histoire Naturelle de M. D'Aubenton. Utrecht, 58 p.Google Scholar
Boles, W. E. 1993. A new cockatoo (Psittaciformes: Cacatuidae) from the Tertiary of Riversleigh, northwestern Queensland, and an evaluation of rostral characters in the systematics of parrots. Ibis, 135: 818.Google Scholar
Boon, W.-M., Robinet, O., Rawlence, N., Bretagnolle, V., Norman, J. A., Christidis, L., and Chambers, G. K. 2008. Morphological, behavioural and genetic differentiation within the Horned Parakeet (Eunymphicus cornutus) and its affinities to Cyanoramphus and Prosopeia. Emu, 108: 251260.Google Scholar
Brereton, J. L. G. 1963. Evolution within the Psittaciformes. Proceedings of the XIIIth International Ornithological Congress, p. 499517.Google Scholar
Brochu, C. A. 2000. Phylogenetic relationships and divergence timing of Crocodylus based on morphology and the fossil record. Copeia, 2000: 657673.Google Scholar
Brodkorb, P. 1970. An Eocene puffbird from Wyoming. Contributions to Geology, 9: 1315.Google Scholar
Brodkorb, P. 1971. Catalog of Fossil Birds. Part 4 (Columbiformes through Piciformes). Bulletin of the Florida State Museum Biological Sciences, 15: 163266.Google Scholar
Buchheim, H. P. 1998. A walk through time at Fossil Butte: historical geology of the Green River Formation at Fossil Butte National Monument, p. 5661. In Santucci, V. L. and McClelland, L. (eds.), National Park Service Paleontological Research: Geologic Resources Division Technical Report Vol. 3, NPS/NRGRD/GRDTR-98/01.Google Scholar
Christidis, L. and Boles, W. E. 2008. Systematics and Taxonomy of Australian Birds. Csiro Publishing, Collingwood, 277 p.Google Scholar
Cibois, A. and Cracraft, J. 2004. Assessing the passerine ‘tapestry’: phylogenetic relationships of the Muscicapoidea inferred from nuclear DNA sequences. Molecular Phylogenetics and Evolution, 32: 264273.Google Scholar
Clarke, J. A., Ksepka, D. T., Smith, N. A., and Norell, M. A. 2009. Combined phylogenetic analysis of a new North American fossil species confirms widespread Eocene distribution for stem rollers (Aves, Coracii). Zoological Journal of the Linnean Society, 157: 586611.Google Scholar
Collar, N. J. 1997. Family Psittacidae (parrots), p. 280477. In del Hoyo, J., Elliott, A., and Sargatal, J. (eds.), Handbook of the Birds of the World, Vol. 4: Sandgrouse to Cuckoos. Lynx Edicions, Barcelona.Google Scholar
Cracraft, J. L. 1981. Toward a phylogenetic classification of the recent birds of the world (Class Aves). Auk, 98: 681714.Google Scholar
Cracraft, J. 2001. Avian evolution, Gondwana biogeography, and the Cretaceous–Tertiary mass extinction event. Proceedings of the Royal Society B, 268: 459469.Google Scholar
Cushman, R. A. J. 1999. Vegetational history and climatic transition in an Eocene intermontane basin: plant microfossil evidence from the Green River Formation, Wyoming, p. 6771. In Santucci, V. L. and McClelland, L. (eds.), National Park Service Paleontological Research: Geologic Resources Division Technical Report, v. 4, NPS/NRGRD/GRDTR-99/03.Google Scholar
De Kloet, R. S. and De Kloet, S. R. 2005. The evolution of the spindlin gene in birds: sequence analysis of an intron of the spindlin W and Z gene reveals four major divisions of the Psittaciformes. Molecular Phylogenetics and Evolution, 36: 706721.Google Scholar
De Pietri, V. L., Berger, J.-P., Pirkenseer, C., Scherler, L., and Mayr, G. 2010. New skeleton from the early Oligocene of Germany indicates a stem-group position of diomedeoidid birds. Acta Palaeontologica Polonica, 55: 343344.Google Scholar
Dyck, J. 1971. Structure and colour production of the blue barbs of Agapornis roseicollis and Cotinga maynana. Zeitschrift fur Zellforschung, 115: 1729.Google Scholar
Dyke, G. J. and Cooper, J. H. 2000. A new psittaciform bird from the London Clay (lower Eocene) of England. Palaeontology, 43: 271285.CrossRefGoogle Scholar
Ericson, P. G. P., Anderson, C. L., Britton, T., Elzanowski, A., Johansson, U. S., Källersjö, M., Ohlson, J. I., Parsons, T. J., Zuccon, D., and Mayr, G. 2006. Diversification of Neoaves: integration of molecular sequence data and fossils. Biology Letters, 4: 543547.Google Scholar
Espinosa De los Monteros, A. 2000. Higher-level phylogeny of Trogoniformes. Molecular Phylogenetics and Evolution, 14: 2034.Google Scholar
Feduccia, A. and Martin, L. D. 1976. The Eocene zygodactyl birds of North America (Aves: Piciformes). Smithsonian Contributions to Paleontology, 27: 101110.Google Scholar
Feduccia, A. and McGrew, P. O. 1974. A flamingo-like wader from the Eocene of Wyoming. Contributions to Geology, 13: 4961.Google Scholar
Forshaw, J. M. 2006. Parrots of the World. Princeton University Press, Princeton.Google Scholar
Gauthier, J. R., Kluge, A. G. and Rowe, T. 1988. Amniote phylogeny and the importance of fossils. Cladistics, 4: 105209.Google Scholar
Gmelin, J. F. 1788. Systema Naturae (13th edition). Lipsiae, 500 p.Google Scholar
Gould, J. 1840. The Birds of Australia, Vol. 5 (Parrots, Pigeons, Cockatoos, Quail). Murray, London, 120 p.Google Scholar
Grande, L. 1984. Paleontology of the Green River Formation, with a review of the fish fauna. Bulletin of the Geological Survey of Wyoming, 63: 1333.Google Scholar
Grande, L. 1994. Studies of paleoenvironments and historical biogeography in the Fossil Butte and Laney Members of the Green River Formation. Contributions to Geology, 30: 1352.Google Scholar
Grande, L. and Buchheim, H. P. 1994. Paleontological and sedimentological variation in early Eocene Fossil Lake. Contributions to Geology, 30: 3356.Google Scholar
Gray, G. R. 1845. Genera of Birds, Vol. 2. Pt. 17. Longmans, London.Google Scholar
Griffiths, C. S. 1997. Correlation of functional domains and rates of nucleotide substitution in cytochrome b. Molecular Phylogenetics and Evolution, 7: 352365.Google Scholar
Griffiths, C. S., Barrowclough, G. F., Groth, J. G., and Mertz, L. 2004. Phylogeny of the Falconidae (Aves): a comparison of the efficacy of morphological, mitochondria 1, and nuclear data. Molecular Phylogenetics and Evolution, 32: 101109.Google Scholar
Groth, J. G. and Barrowclough, G. F. 1999. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Molecular Phylogenetics and Evolution, 12: 115123.Google Scholar
Hackett, S. J., Kimball, R. T., Reddy, S., Bowie, R. C. K., Braun, E. L., Braun, M. J., Chojnowski, J. L., Cox, W. A., Han, K.-L., Harshman, J., Huddleston, C. J., Marks, B. D., Miglia, K. J., Moore, W. S., Sheldon, F. H., Steadman, D. W., Witt, C. C., and Yuri, T. 2008. A phylogenomic study of birds reveals their evolutionary history. Science, 320: 17631768.Google Scholar
Harrison, C. J. O. and Walker, C. A. 1972. The affinities of Halcyornis from the lower Eocene. Bulletin of the British Museum (Natural History), Geology, 21: 153170.Google Scholar
Harrison, C. J. O. and Walker, C. A. 1977. Birds of the British lower Eocene. Tertiary Research, Special Paper, 3: 152.Google Scholar
Harrison, G. L., McLenachan, P. A., Phillips, M. J., Slack, K. E., Cooper, A., and Penny, D. 2004. Four new avian mitochondrial genomes help get to basic evolutionary questions in the Late Cretaceous. Molecular Biological Evolution, 21: 974983.Google Scholar
Hoch, E. 1988. On the Ecological Role of an Eocene Bird from Messel, West Germany. Courier Forschungsinstitut Senckenberg, 107: 249261.Google Scholar
Holyoak, D. T. 1973. Comments on taxonomy and relationships in the parrot subfamilies Nestorinae, Loriinae and Platycercinae. Emu, 73: 157176.Google Scholar
Houde, P. and Olson, S. L. 1992. A radiation of coly-like birds from the Eocene of North America (Aves: Sandcoleiformes new order), p. 137160. In Campbell, K. E. Jr. (ed.), Papers in Avian Paleontology Honoring Pierce Brodkorb. Natural History Museum of Los Angeles County, Science Series No. 36.Google Scholar
James, H. F. 2005. Paleogene fossils and the radiation of modern birds. Auk, 122: 10491054.Google Scholar
Jordan, D. S. 1907. The fossil fishes of California; with supplementary notes on other species of extinct fishes. Bulletin Department of Geology, University of California, 5: 95145.Google Scholar
Johansson, U. S., Parsons, T. J., Irestedt, M., and Ericson, P. G. P. 2001. Clades within the ‘higher land birds’, evaluated by nuclear DNA sequences. Journal of Zoological Systematics and Evolutionary Research, 39: 3751.Google Scholar
Joyce, H. F., Parham, J. F. and Gauthier, J. A. 2004. Developing a protocol for the conversion of rank-based taxon names to phylogenetically defined clade names, as exemplified by turtles. Journal of Paleontology, 78: 9891013.Google Scholar
Juniper, T. and Parr, M. 1998. A Guide to the Parrots of the World. Yale University Press, New Haven, 584 p.Google Scholar
König, C. D. E. 1825. Icones fossilium sectiles. Privately published, London, 4.Google Scholar
Ksepka, D. T. and Clarke, J. A. 2010a. Primobucco mcgrewi (Aves: Coracii) from the Eocene Green River Formation: new anatomical data from the earliest constrained record of stem rollers. Journal of Vertebrate Paleontology, 30: 215225.Google Scholar
Ksepka, D. T. and Clarke, J. A. 2010b. New fossil mousebird (Aves: Coliiformes) with feather preservation provides insight into the ecological diversity of an Eocene North American avifauna. Zoological Journal of the Linnean Society, 160: 685706.CrossRefGoogle Scholar
Latham, J. 1790. Index Ornithologicus, Sive Systema Ornithologiae; Complectens Avium Divisionem in Classes, Ordines, Genera, Species, Ipsarumque Varietates: Adjectis Synonymis, Locis, Descriptionibus, Vols. 1, 2. Leigh & Sotheby, London, 107 p.Google Scholar
Lear, E. 1831. Illustrations of the family of Psittacidae, or parrots. Privately published, London, 8.Google Scholar
Leggitt, V. L. and Buchheim, H. P. 1997. Bird bone taphonomic data from recent lake margin strandlines compared with an Eocene Presbyornis (Aves: Anseriformes) bone strandline. Geological Society of America Abstracts with Programs, 29: A105.Google Scholar
Lesson, R. P. 1830. Traité d'Ornithologie, ou Tableau Méthodique des ordres, sous-ordres, familles, tribus, genres, sous-genres et races d'oiseaux. F.G. Levrault, Paris.Google Scholar
Linnaeus, C. 1758. Systema Naturae. Laurentius Salvius, Holmia, 824 p.Google Scholar
Livezey, B. C. and Zusi, R. L. 2006. Higher-order phylogenetics of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. I. Methods and characters. Bulletin of the Carnegie Museum of Natural History, 37: 1544.Google Scholar
Livezey, B. C. and Zusi, R. L. 2007. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy, II: analysis and discussion. Zoological Journal of the Linnean Society, 149: 195.Google Scholar
Martin, L. D. 2010. Paleogene avifauna of the holarctic. Vertebrata PalAsiatica, 48: 367374.Google Scholar
Mayr, G. 1998a. A new family of Eocene zygodactyl birds. Senckenbergiana Lethaea, 78: 199209.Google Scholar
Mayr, G. 1998b. “Coraciiforme” und “piciforme” Kleinvögel aus dem Mittel-Eozän der Grube Messel (Hessen, Deutschland). Courier Forschungsinstitut Senckenberg, 205: 1101.Google Scholar
Mayr, G. 2000. New or previously unrecorded avian taxa from the middle Eocene of Messel (Hessen, Germany). Mitteilungen Mus. Naturkunde Berlin Geowiss. Reihe, 3: 207219.Google Scholar
Mayr, G. 2001. Comments on the systematic position of the putative lower Eocene parrot Pulchrapollia gracilis. Senckenbergiana Lethaea, 81: 339341.Google Scholar
Mayr, G. 2002. On the osteology and phylogenetic affinities of the Pseudasturidae-lower Eocene stem-group representatives of parrots (Aves, Psittaciformes). Zoological Journal of the Linnean Society, 136: 715729.Google Scholar
Mayr, G. 2007. New specimens of Eocene stem-group psittaciform birds may shed light on the affinities of the first named fossil bird, Halcyornis toliapicus Koenig, 1825. Neues Jahrbuch fur Geologie und Palaontologie Abhandlungen, 244: 207213.Google Scholar
Mayr, G. 2008a. The phylogenetic affinities of the parrot taxa Agapornis, Loriculus, and Melopsittacus (Aves: Psittaciformes): hypotarsus morphology supports the results of molecular analyses. Emu, 108: 2327.Google Scholar
Mayr, G. 2008b. Phylogenetic affinities of the enigmatic avian taxon Zygodactylus based on new material from the early Oligocene of France. Journal of Systematic Palaeontology, 6: 333344.Google Scholar
Mayr, G. 2009. Paleogene Fossil Birds. Springer, Heidelberg, 262 p.Google Scholar
Mayr, G. 2011. Well-preserved new skeleton of the middle Eocene Messelastur substantiates sister group relationship between Messelasturidae and Halcyornithidae (Aves, ?Pan- Psittaciformes). Journal of Systematic Palaeontology, 9: 159171.Google Scholar
Mayr, G. and Clarke, J. 2003. The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics, 19: 527553.Google Scholar
Mayr, G. and Daniels, M. 1998. Eocene parrots from Messel (Hessen, Germany) and the London Clay of Walton-on-the-Naze (Essex, England). Senckenbergiana Lethaea, 78: 157177.Google Scholar
Mayr, G. and Göhlich, U. B. 2004. A new parrot from the Miocene of Germany, with comments on the variation of hypotarsus morphology in some Psittaciformes. Belgium Journal of Zoology, 134: 4754.Google Scholar
Mayr, G., Mourer-Chauviré, C., and Weidig, I. 2004. Osteology and systematic position of the Eocene Primobucconidae (Aves, Coraciiformes sensu stricto), with first records from Europe. Journal of Systematic Palaeontology, 2: 112.Google Scholar
Mayr, G., Rana, R. S., Rose, K. D., Sahni, A., Kumar, K., Singhh, L. and Smith, T. 2010. Quercypsitta-like birds from the early Eocene of India (Aves, ?Psittaciformes). Journal of Vertebrate Paleontology, 30: 467478.Google Scholar
Mayr, G. and Weidig, I. 2004. The early Eocene bird Gallinuloides wyomingensis—a stem group representative of Galliformes. Acta Palaeontologica Polonica, 49: 211217.Google Scholar
McGrew, P. O. and Casilliano, M. 1975. The geological history of Fossil Butte National Monument and Fossil Basin. National Park Service Occasional Paper, 3: 137.Google Scholar
Merton, D. V., Morris, R. B., and Atkinson, I. A. E. 1984. Lek behaviour in a parrot: the kakapo Strigops habroptilus of New Zealand. Ibis, 126: 277283.Google Scholar
Miyaki, C. Y., Matiolo, S. R., Burke, T., and Wajntal, A. 1998. Parrot evolution and paleogeographical events: mitochondrial DNA evidence. Molecular Biology and Evolution, 15: 544551.Google Scholar
Mourer-Chauviré, C. 1992. Une nouvelle famille de Perroquets (Aves, Psittaciformes) dans l'Eocène supérieur des Phosphorites du Quercy. Géobios, 14: 169177.Google Scholar
Olson, S. L. 1977. A lower Eocene frigatebird from the Green River Formation of Wyoming (Pelecaniformes, Fregatidae). Smithsonian Contributions to Paleontology, 35: 133.Google Scholar
Olson, S. L. 1985. The fossil record of birds, p. 79238. In Farner, D. S., King, J. R., and Parkes, K. C. (eds.), Avian Biology, Vol. 8. Academic Press, New York.Google Scholar
Olson, S. L. 1992. A new family of primitive landbirds from the lower Eocene Green River Formation of Wyoming. In Campbell, K. E. Jr. (ed.), Papers in Avian Paleontology Honoring Pierce Brodkorb. Natural History Museum of Los Angeles County, Science Series No. 36. Vol. 127-136.Google Scholar
Ottens-Wainright, P. K., Halanych, K. M., Eberhard, J. R., Burke, R. I., Wiley, J. W., Gnam, R. S. and Aquilera, X. G. 2003. Independent dispersal routes of the genus Amazona from South and Central America into the West Indies. Journal of Caribbean Ornithology Special Issue, p. 2349.Google Scholar
Peters, D. S. 1991. Zoogeographical relationships of the Eocene avifauna from Messel (Germany), p. 572577. In Bell, B. D., Cossee, R. O., Flux, J. E. C., Heather, B. D., Hitchmough, R. A., Robertson, C. J. R., and Williams, M. J. (eds.), Acta XX Congressus Internationalis Ornithologici.Google Scholar
Rowley, I. 1997. Family Cacatuidae (cockatoos), p. 246269. In del Hoyo, J., Elliott, A., and Sargatal, J. (eds.), Handbook of the Birds of the World, Vol. 4, Sandgrouse to Cuckoos. Lynx Edicions, Barcelona.Google Scholar
Schliebusch, I., Schliebusch, G., Henning, F. W., and Schottler, B. 2001. The systematic status of the sulphur-crested and the lesser sulphur-crested cockatoo. Papageien, 5: 166174.Google Scholar
Schweizer, M., Schweizer, S.O., Güntert, M., and Hertwig, S. T. 2010. The evolutionary diversification of parrots supports a taxon pulse model with multiple trans-oceanic dispersal events and local radiations. Molecular Phylogenetics and Evolution, 54: 984994.Google Scholar
Shaw, G. 1794. The Naturalist's Miscellany. London.Google Scholar
Simpson, S. F. and Cracraft, J. 1981. The phylogenetic relationships of the Piciformes (Class Aves). Auk, 98: 481494.Google Scholar
Smith, G. A. 1975. Systematics of parrots. Ibis, 117: 1868.Google Scholar
Smith, M. E., Carroll, A. R., and Singer, B. S. 2008. Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States. GSA Bulletin, 120: 5484.Google Scholar
Sorenson, M. D., Oneal, E., García-Moreno, J., and Mindell, D. P. 2003. More taxon, more characters: the hoatzin problem is still unresolved. Molecular Biology and Evolution, 20: 14841498.Google Scholar
Stephan, B. 1992. Vorkommen und Ausbildung der Fingerkrallen bei rezenten Vögeln. Journal für Ornithologie, 133: 251277.Google Scholar
Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Sinauer Associates, Sunderland.Google Scholar
Tavares, E. S., Baker, A. J., Pereira, S. L., and Miyaki, C. Y. 2006. Phylogenetic relationships and historical biogeography of neotropical parrots (Psittaciformes: Psittacidae: Arini) inferred from mitochondrial and nuclear DNA sequences. Systematic Biology, 55: 454470.Google Scholar
Tokita, M., Kiyoshi, T., and Armstrong, K. N. 2007. Evolution of craniofacial novelty in parrots through developmental modularity and heterochrony. Evolution and Development, 9: 590601.Google Scholar
Trewick, S. A. and Gibb, G. C. 2010. Vicars, tramps and assembly of the New Zealand avifauna: a review of molecular phylogenetic evidence. Ibis, 152: 226253.Google Scholar
Vigors, N. A. 1837. Proceedings of the Zoological Society of London. 4(45): 80.Google Scholar
Vieillot, L. J. P. 1817. L'Histoire generale et particuliere des Oiseaux, leurs moeurs, habitudes, etc. Nouveau Dictionnaire d'Histoire Naturelle Appliquée aux Arts, Vol. 4. Deterville, Paris.Google Scholar
Waterhouse, D. M. 2006. Parrots in a nutshell: the fossil record of Psittaciformes (Aves). Historical Biology, 18: 223234.Google Scholar
Weidig, I. 2006. The first new world occurrence of the Eocene bird Plesiocathartes (Aves: ?Leptosomidae). Paläontologische Zeitschrift, 80: 230237.Google Scholar
Weidig, I. 2010. New birds from the lower Eocene Green River Formation, North America. In Boles, W. E. and Worthy, T. H. (eds.), Proceedings of the VII International Meeting of the Society of Avian Paleontology and Evolution. Records of the Australian Museum, 62: 2944.Google Scholar
Wetmore, A. 1926. Descriptions of additional fossil birds from the Miocene of Nebraska. American Museum Novitiates, 211: 15.Google Scholar
White, N. E., Phillips, M. J., Gilbert, M. T. P., Alfaro-Núñez, A., Willerslev, E., Mawson, P. R., Spencera, P. B. S., and Bunce, M. 2011. The evolutionary history of cockatoos (Aves: Psittaciformes: Cacatuidae). Molecular Phylogenetics and Evolution, 59: 615622.Google Scholar
Worthy, T. H., Tennyson, A. J. D., Jones, C., McNamara, J. A., and Douglas, B. J. 2007. Miocene waterfowl and other birds from central Otago, New Zealand. Journal of Systematic Palaeontology, 5: 139.Google Scholar
Wright, T. F., Schirtzinger, E. E., Matsumoto, T., Eberhard, J. R., Graves, G. R., Sanchez, J. J., Capelli, S., Muller, H., Scharpegge, J., Chambers, G. K., and Fleischer, R. C. 2008. A multilocus molecular phylogeny of the parrots (Psittaciformes): support for a Gondwanan origin during the Cretaceous. Molecular Biology and Evolution, 25: 21412156.Google Scholar