Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-02T23:54:59.011Z Has data issue: false hasContentIssue false

Spionid bore hole Polydorichnus subapicalis new ichnogenus and ichnospecies: a new behavioral trace in gastropod shells

Published online by Cambridge University Press:  14 July 2015

Makiko Ishikawa
Affiliation:
Department of Geology, National Science Museum, 3-23-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan, 〈[email protected]
Tomoki Kase
Affiliation:
Department of Geology, National Science Museum, 3-23-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan, 〈[email protected]

Abstract

Identification of tracemakers is of primary importance for evaluating the biotic interactions inferred from bore holes in fossil shell assemblages. Domicile bore holes in the subapical whorls of gastropods produced by spionid polychaete Dipolydora sp., supposed to be commensal with hermit crabs, are common in dead gastropod assemblages from deepwater habitats in the Philippines. These holes exhibit unique features and support a new criterion for the interpretation of nonpredatory borings in fossil gastropods. Diagnostic of these bore holes are: small circular to elliptical outer opening, the presence of weak dissolution of the columella beneath the bore hole, and the presence of a hollowed tube composed of detritus held together with mucus within some gastropod whorls anterior to the hole. The two selection factors of subapical whorls and elongate shells are supplementary criteria for recognition of these holes. Bore holes are recognized here in a deepwater gastropod assemblage from the upper Pliocene Shinzato Formation of Okinawa, Japan, and named Polydorichnus subapicalis n. igen. and isp. These holes are identical to modern examples exhibiting similar site and species selectivity. P. subapicalis has its oldest fossil record in the upper Miocene of the Philippines, was common in offshore assemblages from the Miocene onward, and is a good indicator of occupation by a hermit crab and for commensalism between polychaetes and hermit crabs.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, E. A. 1891. A commensal annelid. American Naturalist, 25:2535.CrossRefGoogle Scholar
Ausich, W. I. and Gurrola, R. A. 1979. Two boring organisms in a Lower Mississippian community of southern Indiana. Journal of Paleontology, 53:335344.Google Scholar
Baumiller, T. K., Leighton, L. R., and Thompson, D. L. 1999. Boreholes in Mississippian brachiopods and their implications for Paleozoic gastropod drilling. Palaeogeography, Palaeoclimatology, Palaeoecology, 147:283289.CrossRefGoogle Scholar
Bosc, L. A. G. 1802. Histoire naturelle des vers, contenant leur déscription et leurs moeurs, avec figures dessinées d'après nature. Deterville, Paris, 1–3:324 p.CrossRefGoogle Scholar
Boucot, A. J. 1990. Evolutionary Paleobiology of Behavior and Coevolution. Elsevier, Amsterdam, 725 p.Google Scholar
Brett, C. E. and Walker, S. E. 2002. Predators and predation in Paleozoic marine environments, p. 93118. In Kowalewski, M. and Kelley, P. H. (eds.), The fossil record of predation. Paleontological Society Papers, 8.Google Scholar
Bromley, R. G. 1970. Boring as trace fossils and Entobia cretacea Portlock, as an example, p. 4990. In Crimes, T. P. and Harper, J. C. (eds.), Trace fossils. Geological Journal Special Issue, 3.Google Scholar
Bromley, R. G. 1981. Concepts in ichnotaxonomy illustrated by small round holes in shells. Acta Geologica Hispanica, 16:5564.Google Scholar
Bromley, R. G. 1993. Predation habits of octopus past and present and a new ichnospecies, Oichnus ovalis. Bulletin of the Geological Society of Denmark, 40:167173.CrossRefGoogle Scholar
Cameron, B. 1969a. New name for Palaeosabella prisca (McCoy), a Devonian worm boring, and its preserved probable borer. Journal of Paleontology, 43:189192.Google Scholar
Cameron, B. 1969b. Paleozoic shell-boring annelids and their trace fossils. American Zoologist, 9:689703.CrossRefGoogle Scholar
Carriker, M. R. and Yochelson, E. L. 1968. Recent gastropod boreholes and Ordovician cylindrical borings. U.S. Geological Survey Professional Paper, 593B:26 p.Google Scholar
Carter, J. G. 1978. Ecology and evolution of the Gastrochaenacea (Mollusca, Bivalvia) with notes on the evolution of the endolithic habitat. Peabody Museum of Natural History, Yale University Bulletin, 41, 92 p.Google Scholar
Clarke, J. M. 1908. The beginnings of dependent life. New York State Museum Bulletin, 121:146196.Google Scholar
Fenton, C. F. and Fenton, M. A. 1932. Boring sponges in the Devonian of Iowa. American Midland Naturalist, 13:4254.CrossRefGoogle Scholar
Fraaije, R. H. B. 2003. The oldest in situ hermit crab from the Lower Cretaceous of Speeton, U.K. Palaeontology, 46:5357.CrossRefGoogle Scholar
Glaessner, M. F. 1969. Decapoda, p. R400R533. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. R, Arthropoda 4, 2. The Geological Society of America and the University of Kansas Press, Lawrence.Google Scholar
Häntzschel, W. 1975. Miscellanea. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. W, Miscellanea 1. The Geological Society of America and the University of Kansas Press, Lawrence, 269 p.Google Scholar
Harper, E. M., Forsythe, G. T. W., and Palmer, T. 1998. Taphonomy and the Mesozoic marine revolution: Preservation state masks the importance of boring predators. Palaios, 13:352360.CrossRefGoogle Scholar
Hartman, O. 1943. Description of Polydora websteri. In V. L. Loosanoff and J. B. Engle (eds.), Polydora in oysters suspended in the water. Biological Bulletin, 85:6978.Google Scholar
Helbling, G. S. 1779. Beiträge zur Kenntnis neuer seltener Konchylien. In Abhandlungen einer Privatgesellschaft in Böhmen, zur aufnabme der Mathematis, der vaterlan, bischen Geschichte, und der Naturgeschichte. Ignaz Edlen von Born, Prag, 4:102125.Google Scholar
Hillmer, G. and Schulz, M. G. 1973. Ableitung der Biologie und Ökologie eines Polychaeten der Oberkreide durch Analyse des Bohrganges Ramosulcichnus biforans (Gripp) nov. ichnogen. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, 42!524.Google Scholar
Ishikawa, M., Kase, T., Tsutsui, H., and Tojo, B. 2004. Snails versus hermit crabs: A new interpretation on shell-peeling predation in fossil gastropod assemblages. Paleontological Research, 8:99108.CrossRefGoogle Scholar
Kabat, A. R. 1990. Predatory ecology of naticid gastropods with a review of shell boring predation. Malacologia, 32:155193.Google Scholar
Kase, T. and Ishikawa, M. 2003. Mystery of naticid predation history solved: Evidence from a “living fossil” species. Geology, 31:403406.2.0.CO;2>CrossRefGoogle Scholar
Kase, T., Shigeta, Y., and Futakami, M. 1994. Limpet home depressions in Cretaceous ammonites. Lethaia, 27:947950.CrossRefGoogle Scholar
Kase, T., Shigeta, Y., and Futakami, M. 1995. Limpet pits on ammonoids living in surface waters: Reply. Lethaia, 28:315316.CrossRefGoogle Scholar
Kase, T., Johnston, P. A., Seilacher, A., and Boyce, J. B. 1998. Alleged mosasaur bite marks on Late Cretaceous ammonites are limpet (patellogastropod) home scars. Geology, 26:947950.2.3.CO;2>CrossRefGoogle Scholar
Kelley, P. H. and Hansen, T. A. 2003. The fossil record of drilling predation on bivalves and gastropods, p. 113139. In Kelley, P. H., Kowalewski, M., and Hansen, T. A. (eds.), Predator-Prey Interactions in the Fossil Record. Kluwer Academic/Plenum, New York.CrossRefGoogle Scholar
Kern, J. P. 1979. The ichnofossil Helicotaphrichnus commensalis in the Korytnica basin (middle Miocene; Holycross Mountains, central Poland). Acta Geologica Polonica, 29:239242.Google Scholar
Kern, J. P., Grimmer, J. C., and Lister, K. H. 1974. A new fossil spionid tube, Pliocene and Pleistocene of California and Baja California. Journal of Paleontology, 48:978982.Google Scholar
Kohn, A. J. and Arua, I. 1999. An Early Pleistocene molluskan assemblage from Fiji: Gastropod faunal composition, paleoecology and biogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 146:99145.CrossRefGoogle Scholar
Kowalewski, M. 1993. Morphometric analysis of predatory drillholes. Palaeogeography, Palaeoclimatology, Palaeoecology, 102:6988.CrossRefGoogle Scholar
Kowalewski, M. 2002. The fossil record of predation: An overview of analytical methods, p. 342. In Kowalewski, M. and Kelley, P. H. (eds.), The fossil record of predation. Paleontological Society Papers, 8.Google Scholar
MacNeil, F. S. 1960. Tertiary and Quaternary Gastropoda of Okinawa. U.S. Geological Survey Professional Paper, 339, 148 p.Google Scholar
Mägdefrau, K. 1932. Über einige Bohrgänge aus dem Unteren Muschelkalk von Jena. Paläontologische Zeitschrift, 14:150160.CrossRefGoogle Scholar
McLaughlin, P. A. 1983. Hermit crabs—Are they really polyphyletic? The Journal of Crustacean Biology, 3:608621.CrossRefGoogle Scholar
Morris, S. C. 1989. Burgess Shale faunas and the Cambrian explosion. Science, 246:339346.CrossRefGoogle ScholarPubMed
Nielsen, K. S. S., Nielsen, J. K., and Bromley, R. G. 2003. Palaeoecological and ichnological significance of microborings in Quaternary Foraminifera. Palaeontologia Electronica, 6:113.Google Scholar
Noda, H. 1988. Molluscan fossils from the Ryukyu Island, Southwest Japan, Pt. 2, Gastropoda and Pelecypoda from the Shinzato Formation in the middle part of Okinawa-Jima. Science Reports, the Institute of Geoscience, University of Tsukuba, sec. B, Geological Sciences, 9:2985.Google Scholar
Ortmann, A. E. 1892. Die Decapoden-Krebse des Strassburger Museums, mit besonderer Berücksichtigung der von Herrn Dr. Döderlein bei Japan und bei den Liu-Kiu-Inseln gesammelten und zur Zeit im Strassburger Museum auf bewahrten Formen. IV Theil. Die Abtheilungen Galatheidea und Paguridea. Zoologische Jahrbucher. Abteilung fur Anatomie und Ontogenie der Tiere, 6:241325.Google Scholar
Overstreet, R. M. 1983. Metazoan symbionts of crustaceans, p. 155250. In Bliss, D. (ed.), The Biology of the Crustacea, Academic Press, New York, 6.CrossRefGoogle Scholar
Quinn, J. E. Jr. 1991. New species of Gaza, Mirachelus, Calliotropis, and Echinogurges (Gastropoda: Trochidae) from the northwestern Atlantic Ocean. The Nautilus, 105:166172.Google Scholar
Robba, E. and Ostinelli, F. 1975. Studi paleoecologici sul Pliocene Ligure I. Testimonianze di predazione sui mulluschi Pliocenici di Albenga. Rivista Italiana di Paleontologia, 81:309372.Google Scholar
Schumacher, C. F. 1817. Essai d'un nouveau système des habitations des vers testacés. Copenhague, Schultz, 287 p.Google Scholar
Seilacher, A. 1969. Paleoecology of boring barnacles. American Zoologist, 9:705719.CrossRefGoogle Scholar
Shuto, T. 1969. Neogene gastropods from Panay Island, the Philippines (Contributions to the Geology and Palaeontology of Southeast Asia, LXVIII). Memoirs of the Faculty of Science, Kyushu University, ser. D, Geology, XIX:2985.Google Scholar
Smith, S. A., Thayer, C. W., and Brett, C. E. 1985. Predation in the Paleozoic: Gastropod-like drillholes in Devonian brachiopods. Science, 230:10331035.CrossRefGoogle ScholarPubMed
Taylor, P. D. and Wilson, M. A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 62:1103.CrossRefGoogle Scholar
Taylor, J. D., Cleevely, R. J., and Morris, N. J. 1983. Predatory gastropods and their activities in the Blackdown greensand (Albian) of England. Palaeontology, 26:521553.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: Evidence from snails, predators and grazers. Paleobiology, 3:245258.CrossRefGoogle Scholar
Vermeij, G. J. 1987. Evolution and Escalation, An Ecological History of Life. Princeton University Press, Princeton, New Jersey, 527 p.CrossRefGoogle Scholar
Vermeij, G. J. 1998. Sabia on shells: A specialized Pacific-type commensalism in the Caribbean Neogene. Journal of Paleontology, 72:465472.CrossRefGoogle Scholar
Verrill, A. E. 1879. Notice of recent additions to the marine invertebrata, of the northeastern coast of America, with descriptions of new genera and species and critical remarks on others, Pt. 1, Annelida, Gephyrea, Nemertina, Nematoda, Polyzoa, Tunicata, Mollusca, Anthozoa, Echinodermata, Porifera. Proceedings of the United States National Museum, 2:165205.CrossRefGoogle Scholar
Voight, J. R. and Walker, S. E. 1995. Geographic variation of shell bionts in the deep-sea snail Gaza. Deep-Sea Research I, 42:12611271.CrossRefGoogle Scholar
Voigt, E. 1965. Über parasitische Polychaeten in Kreide-Austern sowie einige andere in Muschelschalen bohrende Würmer. Paläontologische Zeitschrift, 39:193211.CrossRefGoogle Scholar
Walker, S. E. 1988. Taphonomic significance of hermit crabs (Anomura: Paguridae): epifaunal hermit crab—infaunal gastropod example. Palaeogeography, Palaeoclimatology, Palaeoecology, 63:4571.CrossRefGoogle Scholar
Walker, S. E. 1989. Hermit crabs as taphonomic agents. Palaios, 4:439452.CrossRefGoogle Scholar
Walker, S. E. 1992. Criteria for recognizing marine hermit crabs in the fossil record using gastropod shells. Journal of Paleontology, 66:535558.CrossRefGoogle Scholar
Walker, S. E. 2001. Palaeoecology of gastropods preserved in turbiditic slope deposits from the Upper Pliocene of Ecuador. Palaeogeography, Palaeoclimatology, Palaeoecology, 166:141163.CrossRefGoogle Scholar
Walker, S. E. and Brett, C. E. 2002. Post-Paleozoic patterns in marine predation: Was there a Mesozoic and Cenozoic marine predatory revolution?, p. 119194. In Kowalewski, M. and Kelley, P. H. (eds.), The fossil record of predation. Paleontological Society Papers, 8.Google Scholar
Walker, S. E. and Voight, J. R. 1994. Paleoecologic and taphonomic potential of deepsea gastropods. Palaios, 9:4859.CrossRefGoogle Scholar
Watson, R. B. 1879. Mollusca of HMS ‘Challenger’ Expedition, Pt. 3, Trochidae, viz. The genera Sequenzia, Basilissa, Gaza, and Bembix. Journal of the Linnean Society of London. Zoology, 14:586605.Google Scholar
Watson, R. B. 1880. Mollusca of HMS ‘Challenger’ Expedition, Pt. 5, Families Solenoconchia, Trochidae, Heterophrosynidae, Litorinidae, Cerithiidae. Journal of the Linnean Society of London. Zoology, 15:87126.Google Scholar
Williams, J. D. 2000. A new species of Polydora (Polychaeta: Spionidae) from the Indo-Pacific and first record of host hermit crab egg predation by a commensal polydorid worm. Zoological Journal of the Linnean Society, 129:537548.CrossRefGoogle Scholar
Williams, J. D. 2001a. Polydora and related genera associated with hermit crabs from the Indo-Pacific (Polychaeta: Spionidae), with descriptions of two new species and a second polydorid egg predator of hermit crabs. Pacific Science, 55:429465.CrossRefGoogle Scholar
Williams, J. D. 2001b. Reproduction and larval development of Polydora robi (Polychaeta: Spionidae), an obligate commensal of hermit crabs from the Philippines. Invertebrate Biology, 120:237247.CrossRefGoogle Scholar
Williams, J. D. 2002. The ecology and feeding biology of two Polydora species (Polychaeta: Spionidae) found to ingest the embryos of host hermit crabs (Anomura: Decapoda) from the Philippines. Journal of Zoology, 257:339351.CrossRefGoogle Scholar
Williams, J. D. and McDermott, J. J. 1997. Feeding behavior of Dipolydora commensalis (Polychaeta: Spionidae): Particle capture, transport, and selection. Invertebrate Biology, 116:115123.CrossRefGoogle Scholar
Williams, J. D. and McDermott, J. J. 2004. Hermit crab biocoenoses: A worldwide review of the diversity and natural history of hermit crab associates. Journal of Experimental Marine Biology and Ecology, 305:1128.CrossRefGoogle Scholar
Zottoli, R. A. and Carriker, M. R. 1974. Burrow morphology, tube formation, and microarchitecture of shell dissolution by the spionid polychaete Polydora websteri. Marine Biology, 27:307316.CrossRefGoogle Scholar