Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T23:07:09.033Z Has data issue: false hasContentIssue false

Sphenothallus from the Lower Silurian of China

Published online by Cambridge University Press:  20 May 2016

Wang Yi
Affiliation:
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China,
Hao Shou-Gang
Affiliation:
Department of Geology, Peking University, Beijing 100871, China
Chen Xu
Affiliation:
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China,
Rong Jia-Yu
Affiliation:
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China,
Li Guo-Xiang
Affiliation:
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China,
Liu Jianbo
Affiliation:
Department of Geology, Peking University, Beijing 100871, China
Xu Honghe
Affiliation:
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China,

Extract

The genus Sphenothallus was erected by Hall (1847, p. 261), who originally considered it a land plant. Sphenothallus was later classified as a marine invertebrate. Moore and Harrington (1956, p. F65) regarded Sphenothallus as a hydrozoan or scyphozoan. Van Iten et al. (1992, p. 139) supported Moore and Harrington's idea, and argued that it displays a close relationship to conularids (also see Li, 2000, p. 91). However, Mason and Yochelson (1985, p. 93–94) suggested that Sphenothallus is an annelid or “worm” (also see Fauchald et al., 1986, p. 64; Feldmann et al., 1986, p. 344–345; Choi, 1990, p. 403; Bartels et al., 1998, p. 114–117). The exact phylogenetic affinity of Sphenothallus is still debated.

Type
Paleontological Notes
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baird, G. C., and Brett, C. E. 2002. Indian Castle Shale: late synorogentic siliciclastic succession in an evolving Middle to Late Ordovician foreland basin, eastern New York State. Physics and Chemistry of the Earth, 27:203230.CrossRefGoogle Scholar
Bartels, C., Briggs, D. E. G., and Brassel, G. 1998. The Fossils of the Hunsrück Slate: Marine Life in the Devonian. Cambridge University Press, Cambridge, 309 p.Google Scholar
Billings, E. 1862. New species of Lower Silurian fossils. Geological Survey of Canada pamphlet, p. 2556.Google Scholar
Bodenbender, B. E., Wilson, M. A., and Palmer, T. J. 1989. Paleoecology of Sphenothallus on an Upper Ordovician hardground. Lethaia, 22:217225.CrossRefGoogle Scholar
Bolton, T. E. 1994. Sphenothallus angustifoilus Hall, 1847 from the lower Upper Ordovician of Ontario and Quebec. Geological Survey of Canada Bulletin, 479:111.Google Scholar
Brood, K. 1988. A new species of Campylites from Gotland. Geologica Förenigens i Stockholm Forhandlinger, 110:8385.CrossRefGoogle Scholar
Chen, X. 1990. Graptolite depth zonation. Acta Palaeontologica Sinica 29:507526. (In Chinese with English summary)Google Scholar
Chen, X., Rong, J. Y., Mitchell, C., Harper, D. A. T., Fan, J. X., Zhan, R. B., Zhang, Y. D., Li, R. Y., and Wang, Y. 2000. Late Ordovician to earliest Silurian graptolite and brachiopods biozonation from the Yangtze region, South China, with a global correlation. Geological Magazine, 137:623650.Google Scholar
Choi, D. K. 1990. Sphenothallus (“Vermes”) from the Tremadocian Dumugol Formation, Korea. Journal of Paleontology, 64:403408.CrossRefGoogle Scholar
Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10:965971.CrossRefGoogle Scholar
Fauchald, K., Sturmer, W., and Yochelson, E. L. 1986. Sphenothallus “Vermes” in the Early Devonian Hunsruck Slate, West Germany. Palaontologische Zeitschrift, 60:5764.CrossRefGoogle Scholar
Feldmann, R. M., Hannibal, J. T., and Babcock, L. E. 1986. Fossil worms from the Devonian of North America (Sphenothallus) and Burma (“Vermes”) previously identified as phyllocarid arthropods. Journal of Paleontology, 60:341346.CrossRefGoogle Scholar
Globensky, Y. 1987. Geologie des Basses-Terres du Saint-Laurent. Ministère de l'Energie et des Resources du Québec, MM 85-02, 63 p.Google Scholar
Hall, J. 1847. Palaeontology of New-York. Volume I. Containing Descriptions of the Organic Remains of the Lower Division of the New-York System. C. Van Benthuysen, Albany, 338 p., 87 pls.Google Scholar
Holser, W. T. 1997. Geochemical events documented in inorganic carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 132:173182.CrossRefGoogle Scholar
Li, G. X. 2000. Early Cambrian phosphatic skeletal fossils from east Yunnan and south Shaanxi. Unpublished Ph.D. thesis, Nanjing Institute of Geology and Palaeontology, 176 p. (In Chinese with English summary)Google Scholar
Mason, C., and Yochelson, E. L. 1985. Some tubular fossils (Sphenothallus: “Vermes”) from the middle and late Paleozoic of the United States. Journal of Paleontology, 59:8595.Google Scholar
Moore, R. C., and Harrington, H. J. 1956. Conulata, p. F54F66. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part F, Coelentrata. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Murchison, R. I. 1839. The Silurian System, Found on Geological Researches in the Counties of Salop, Hereford, Radnor, Montgomery, Caermarthen, Brecon, Pembroke, Monmouth, Gloucester, Worcester, and Stafford; with descriptions of the coal-fields and overlying formations. John Murray, London. Pt. I:576 p., Pt. II: 768 p.Google Scholar
Neal, M. X., and Hannibal, J. T. 2000. Paleoecologic and taxonomic implications of Sphenothallus and Sphenothallus-like specimens from Ohio and areas adjacent to Ohio. Journal of Paleontology, 74:369380.CrossRefGoogle Scholar
Parks, W. A. 1928. Faunas and stratigraphy of the Ordovician black shales and related rocks in southern Ontario. Transactions of the Royal Society of Canada, Section IV:3990.Google Scholar
Rong, J. Y. 1984. Ecostratigraphic evidence of the Upper Ordovician regressive sequences and the effect of glaciation. Journal of Stratigraphy 8:1929. (In Chinese with English abstract)Google Scholar
Ruedemann, R. H. 1896. The discovery of a sessile Conularia. New York State Geological Survey Annual Report, 15:699728.Google Scholar
Ruedemann, R. H. 1916. Account of some new or little-known species of fossils, mostly from the Paleozoic rocks of New York. New York State Museum Bulletin, 189:7112.Google Scholar
Van Iten, H., Cox, R. S., and Mapes, R. H. 1992. New data on the morphology of Sphenothallus Hall: implications for its affinities. Lethaia, 25:135144.CrossRefGoogle Scholar
Van Iten, H., Fitzke, J. A., and Cox, R. S. 1996. Problematical fossil cnidarians from the Upper Ordovician of the north-central USA. Palaeontology, 39:10371064.Google Scholar
Wang, K., Chatterton, B. D. E., and Wang, Y. 1997. An organic carbon isotope record of Late Ordovician to Early Silurian marine sedimentary rocks, Yangtze Sea, South China: implications for CO2 changes during the Hirnantian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 132:147158.CrossRefGoogle Scholar
Zhu, M. Y., Van Iten, H., Cox, R. S., Zhao, Y. L., and Erdtmann, B. D. 2000. Occurrence of Byronia Matthew and Sphenothallus Hall in the Lower Cambrian of China. Palaeontologische Zeitschrift, 74:227238.CrossRefGoogle Scholar