Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T11:33:19.707Z Has data issue: false hasContentIssue false

Skeletal crystallography and crinoid calyx architecture

Published online by Cambridge University Press:  14 July 2015

Brian E. Bodenbender
Affiliation:
Department of Geological and Environmental Sciences, Hope College, P. O. Box 9000, Holland, Michigan 49422-9000,
William I. Ausich
Affiliation:
Department of Geological Sciences, The Ohio State University, 130 Orton Hall, 155 South Oval Mall, Columbus, 43210-1397,

Abstract

In the first broad survey of skeletal crystallography in fossil crinoids, we examine 10 Ordovician species representing five orders and apply crystallographic data to questions of crinoid phylogeny, homology, and development. Orientations of c crystallographic axes in the large calcite crystals that form the skeletal plates of the crinoid calyx vary systematically according to the position of each plate on the calyx. Plates lower on the calyx have axes more inclined toward the stem attachment than are axes from plates higher on the calyx. Although most specimens display this general pattern, exact orientations vary widely between species with no discernible relationship to phylogeny. Furthermore, the topological pattern of variation does not correlate with the order of addition of plates to the calyx during growth.

Lack of a phylogenetic signal among diverse crinoids early in the clade's history implies that crystallographic data will be of limited use to high-level phylogenetic studies within crinoids. Neither does skeletal crystallography strongly favor any of several competing interpretations of homologies among major crinoid calyx plates. Crystallographic data are informative, however, for some minor skeletal plates. Brachial plates have c axes that roughly parallel the surface of the plate, whereas interbrachial plates have perpendicular c axes, suggesting that distinct generative processes produce these plates. Anal plates have orientations similar to interbrachials, suggesting similar developmental mechanisms.

Although c axes have regular orientations relative to plate morphology within a specimen, a axes show extensive intraspecimen variability with respect to plate morphology.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W. I. 1995. The primitive crinoid had four circlets of aboral cup plates—revised homologies for the Class Crinoidea (Echinodermata). Geological Society of America Abstracts with Programs, 27:A113.Google Scholar
Ausich, W. I. 1996. Crinoid plate circlet homologies. Journal of Paleontology, 70:955964.CrossRefGoogle Scholar
Ausich, W. I. 1997. Calyx plate homologies and early evolutionary history of the Crinoidea. Paleontological Society Papers, 3:289304.CrossRefGoogle Scholar
Ausich, W. I. 1998. Early phylogeny and subclass division of the Crinoidea (Phylum Echinodermata). Journal of Paleontology, 72:499509.CrossRefGoogle Scholar
Bodenbender, B. E. 1996. Patterns of crystallographic axis orientation in blastoid skeletal elements. Journal of Paleontology, 70:466484.CrossRefGoogle Scholar
Bodenbender, B. E. 1997. Echinoderm skeletal crystallography and paleobiological applications. Paleontological Society Papers, 3:191204.CrossRefGoogle Scholar
Bodenbender, B. E., and Hiemstra, E. J. 1998. Preliminary investigation of cystoid skeletal crystallography. Geological Society of America Abstracts with Programs, 30(2):7.Google Scholar
Brower, J. C. 1978. Camerates, p. T244T263. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2, Crinoidea. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Dillaman, R. M., and Hart, H. V. 1981. X-ray evaluation of a SEM technique for determining the crystallography of echinoid skeletons. Scanning Electron Microscopy, 3:313320.Google Scholar
Emlet, R. B. 1985. Crystal axes in Recent and fossil echinoids indicate trophic mode in larval development. Science, 230:937940.CrossRefGoogle ScholarPubMed
Emlet, R. B. 1989. Apical skeletons of sea urchins (Echinodermata: Echinoidea): two methods for inferring mode of larval development. Paleobiology, 15:223254.CrossRefGoogle Scholar
Emlet, R. B. 1995. Larval spicules, cilia, and symmetry as remnants of indirect development in the direct developing sea urchin Heliocidaris erythrogramma . Developmental Biology, 167:405415.CrossRefGoogle ScholarPubMed
Fisher, D. C., and Bodenbender, B. E. 1993. CalcAxes: a program for computing calcite crystallographic axis orientations. Contributions from the Museum of Paleontology The University of Michigan, 28:327363.Google Scholar
Foote, M. 1994. Morphology of Ordovician–Devonian crinoids. Contributions from the Museum of Paleontology The University of Michigan, 29:139.Google Scholar
Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology, 21:273299.CrossRefGoogle Scholar
Foote, M. 1996. Morphological diversification of Mesozoic crinoids, p. 124. In Repetski, J. E. (ed.), Sixth North American Paleontological Convention Abstracts of Papers. Paleontological Society Special Publication, 8.Google Scholar
Jackson, R. T. 1912. Phylogeny of the Echini, with a revision of Paleozoic species. Memoirs of the Boston Society of Natural History, 7, 491 p.Google Scholar
Kästle, B. 1982. Orientierung der a-Achsen im Kalzit von Crinoiden-Stielgliedern und -Armen. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 8:491500.CrossRefGoogle Scholar
Kendrick, D. C. 1996. Morphospace filling in flexible crinoids, p. 208. In Repetski, J. E. (ed.), Sixth North American Paleontological Convention Abstracts of Papers. Paleontological Society Special Publication, 8.Google Scholar
Kendrick, D. C. 1997. Morphometric and phylogenetic patterns of evolution in flexible crinoids. Geological Society of America Abstracts with Programs, 29(6):A99.Google Scholar
Kirchner, G. 1929. Die Optik des Crinoidenskelettes. Zoologische Jahrbucher. Abteilung für Allgemeine Zoologie und Physiologie der Tiere. Band 46, Heft 3:413464.Google Scholar
Mooi, R., and David, B. 1997. Skeletal homologies of echinoderms. Paleontological Society Papers, 3:305335.CrossRefGoogle Scholar
Moore, R. C., and Teichert, C. (eds.). 1978. Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2, Crinoidea. Geological Society of America and University of Kansas Press, Lawrence, 1,027 p.Google Scholar
Okazaki, K., and Inoué, S. 1976. Crystal property of the larval sea urchin spicule. Development Growth and Differentiation, 18:413434.CrossRefGoogle Scholar
Okazaki, K., Dillaman, R. M., and Wilbur, K. M. 1981. Crystalline axes of the spine and test of the sea urchin Strongylocentrotus purpuratus: determination by crystal etching and decoration. Biological Bulletin, 161:402415.CrossRefGoogle Scholar
Raup, D. M. 1959. Crystallography of echinoid calcite. Journal of Geology, 67:661674.CrossRefGoogle Scholar
Raup, D. M. 1960. Ontogenetic variation in the crystallography of echinoid calcite. Journal of Paleontology, 34:10411050.Google Scholar
Raup, D. M. 1962. The phylogeny of calcite crystallography in echinoids. Journal of Paleontology, 36:793810.Google Scholar
Raup, D. M. 1965. Crystal orientations in the echinoid apical system. Journal of Paleontology, 39:934951.Google Scholar
Raup, D. M. 1966. Crystallographic data for echinoid coronal plates. Journal of Paleontology, 40:555568.Google Scholar
Simms, M. J. 1993. Reinterpretation of thecal plate homology and phylogeny in the Class Crinoidea. Lethaia, 26:303312.CrossRefGoogle Scholar
Zítt, J. 1983. Spoon-like crinoids from Stramberk (Lower Cretaceous, CSSR). Sborník Narodního Muzea v Praze, 39B:69114.Google Scholar