Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-12-03T19:24:37.674Z Has data issue: false hasContentIssue false

Siliceous microfossils from the warm Late Cretaceous and early Cenozoic Arctic Ocean

Published online by Cambridge University Press:  20 May 2016

Daniel J. Dell'Agnese
Affiliation:
Department of Geology and Geophysics, University of Wisconsin, Madison 53706
David L. Clark
Affiliation:
Department of Geology and Geophysics, University of Wisconsin, Madison 53706

Abstract

More than 40 species of siliceous microfossils are present in both T-3 core Fl-437 (Cretaceous) and in core Fl-422 (Eocene) from the central Arctic Ocean. Previous identifications of the silicoflagellates were the basis of the ages for these cores, but diatoms of the two cores, previously unidentified, suggest that Fl-437 could be as old as Campanian rather than middle to late Maastrichtian and that Fl-422 may be early to middle Eocene rather than middle to late Eocene. Identification of archaeomonads and ebridians completes the cataloging of the known biosiliceous assemblages of the older Arctic Ocean.

Strong seasonality for the Late Cretaceous and early Cenozoic Arctic Ocean is suggested from alternating layers of vegetative cells and resting spores in both cores. The abundance of fossils is interpreted as evidence for seasonal upwelling in a nutrient-rich and much warmer Arctic Ocean. No evidence of seasonal ice or of ice-rafting is present. The profound climate change from the warmer older Arctic Ocean to the ice-covered condition of the present occurred after deposition of the sediment of Fl-422.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, F. W. 1970. Some fallacies of quantitative diatom paleontology. Nova Hedwigia Beihefte, 39:22852295.Google Scholar
Barron, J. A. 1985. Diatom biostratigraphy of the CESAR 6 core, Alpha Ridge, Arctic Ocean, p. 137148. In Jackson, J. R., Blasco, S., and Mudie, P. J. (eds.), Initial Geological Report on CESAR—The Canadian Expedition to Study the Alpha Ridge. Geological Survey of Canada, Paper 84-22.Google Scholar
Barron, J. A., Bukry, D., and Poore, R. Z. 1984. Correlation of the middle Miocene Kellogg Shale of northern California. Micropaleontology, 30:138170.Google Scholar
Benda, L. 1972. The diatoms of the Moler Formation of Denmark (lower Eocene). A preliminary report. Nova Hedwigia Beihefte, 39:251266.Google Scholar
Berggren, W. A. 1960. Some planktonic foraminifera from the lower Eocene (Ypresian) of Denmark and northwestern Germany. Acta University of Stockholm Contribution to Geology, 5:41108.Google Scholar
Boney, A. D. 1973. Observations on the silicoflagellate Dictyocha speculum ehrenbergi. Journal of the Marine Biological Association of the United Kingdom, 53:263268.Google Scholar
Bergstresser, T. J., and Krebs, W. N. 1983. Late Cretaceous diatoms from the Pierre Shale, Wyoming, Colorado and Kansas. Journal of Paleontology, 57:883891.Google Scholar
Bukry, D. 1973. Coccolith and silicoflagellate stratigraphy, Tasman Sea and southwestern Pacific Ocean, Deep Sea Drilling Project Leg 21, p. 885893. In Burns, R. E. et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Volume 21. Washington, D.C.Google Scholar
Bukry, D. 1974. Coccolith and silicoflagellate stratigraphy, eastern Indian Ocean, Deep Sea Drilling Project Leg 22, p. 601607. In Borch, C. C. et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Volume 22. Washington, D.C.Google Scholar
Bukry, D. 1975. Silicoflagellate and coccolith stratigraphy, Deep Sea Drilling Project Leg 29, p. 845878. In Kennett, J. P. et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Volume 29. Washington, D.C.Google Scholar
Bukry, D. 1976. Cenozoic silicoflagellates and coccolith stratigraphy, South Atlantic Ocean, Deep Sea Drilling Project, Leg 36, p. 885917. In Hollister, C. D. et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Volume 35. Washington, D.C.Google Scholar
Bukry, D. 1981. Cretaceous Arctic silicoflagellates. Geo-Marine Letters, 1:5763.Google Scholar
Bukry, D. 1984. Paleogene paleoceanography of the Arctic Ocean is constrained by the middle or late Eocene age of USGS core Fl-422: evidence from silicoflagellates. Geology, 12:199201.Google Scholar
Bukry, D. 1985. Correlation of Late Cretaceous Arctic silicoflagellates from the Alpha Ridge, p. 125135. In Jackson, H. R., Blasco, S., and Mudie, P. J. (eds.), Initial Geological Report on CESAR—The Canadian Expedition to Study the Alpha Ridge, Arctic Ocean. Geological Survey of Canada Paper 84-22.Google Scholar
Bukry, D., and Foster, J. H. 1974. Silicoflagellate zonation of the Upper Cretaceous to lower Miocene deep-sea sediments. U.S. Geological Survey, Journal of Research, 2:301303.Google Scholar
Clark, D. L. 1974. Late Mesozoic and early Cenozoic sediment cores from the Arctic Ocean. Geology, 2:4144.Google Scholar
Clark, D. L. 1988. Early history of the Arctic Ocean. Paleoceanography, 3:539550.Google Scholar
Clark, D. L. and Kitchell, J. A. 1979. The terminal Cretaceous event: a geologic problem with an oceanographic solution. Geology, 7:228229.2.0.CO;2>CrossRefGoogle Scholar
Clark, D. L. and Kitchell, J. A. 1981. Terminal Cretaceous extinctions and the Arctic spillover model. Science, 212:577.Google Scholar
Clark, D. L., Byers, C. W., and Pratt, L. M. 1986. Cretaceous black mud from the central Arctic Ocean. Paleoceanography, 1:265271.Google Scholar
Clark, D. L., Chern, L. A., Hogler, J. A., Mennicke, C. M., and Atkins, E. D. 1990. Late Neogene climate evolution of the central Arctic Ocean. Marine Geology, 93:6994.Google Scholar
Cornell, W. C. 1972a. Chrysomonad cysts and silicoflagellates from the Marca Shale Member, Moreno Formation, Fresno County, California. Unpubl. Ph.D. dissertation, University of California, Los Angeles, 235 p.Google Scholar
Cornell, W. C., 1972b. Late Cretaceous chrysomonad cysts. Palaeogeography, Palaeoclimatology, Palaeoecology, 12:3347.Google Scholar
Deflandre, G. 1941. Sur la présence de diatommées dans certain silex turoniens et sur un nouveau mode de fossilisation de ces organismes. Comptes rendus des Séances de l'Académie des Sciences, Paris, 213:878880.Google Scholar
Dell'Agnese, D. J. 1988. Cretaceous and Eocene diatoms, silicoflagellates, archaeomonads, and ebridians from the Arctic Ocean: core Fl-437 and Fl-422. Unpubl. , , Madison, 139 p.Google Scholar
Dumoulin, J. A. 1979. Eocene-Oligocene silicoflagellates of the Kreyenhagen Formation, Fresno County, California. Unpubl. , , Madison, 158 p.Google Scholar
Dzinoridze, R. N., Jousé, A. P., Koroleva-Golikova, G. S., et al. 1978. Diatom and radiolarian Cenozoic stratigraphy, Norwegian Basin; DSDP Leg 38, p. 289427. In Initial Reports of the Deep Sea Drilling Project (Supplement to Volume 38, 39, 40, 41). Washington, D.C.Google Scholar
Embry, A. F. 1990. Geological and geophysical evidence in support of the hypothesis of anticlockwise rotation of northern Alaska. Marine Geology, 93:317329.Google Scholar
Fenner, J. 1985. Late Cretaceous to Oligocene planktic diatoms, p. 713762. In Bolli, H. M., Saudners, J. B., and Perch-Nielsen, K. (eds.), Plankton Stratigraphy. Cambridge Press, New York.Google Scholar
Fenner, J. 1988. Occurrences of pre-Quaternary diatoms in Scandinavia reconsidered. Meyniana, 40:133141.Google Scholar
Forti, A., and Schulz, P. 1932. Erste Nitteilungen über Diatommen aus dem Hannoverschen Gault. Beihefte Botanische Centralblatt, 2:241246.Google Scholar
Geroch, S. 1978. Lower Cretaceous diatoms in the Polish Carpathians. Polskiego Towarzustwa Geologicznego Rocznik, 48:283296.Google Scholar
Gersonde, R., and Harwood, D. M. 1990. Lower Cretaceous diatoms from ODP Leg 113 site 693 (Weddell Sea). Part 1: Vegetative cells, p. 365402. In Barker, P. F. et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, Volume 113. Washington, D.C.Google Scholar
Gombos, A. M. 1976. Paleogene and Neogene diatoms from the Falkland Plateau and Malvinas Outer Basin, Leg 36, Deep Sea Drilling Project, p. 575687. In Barker, P. et al. (eds.), Initial Reports of the Deep Sea Project, Volume 36. Washington, D.C.Google Scholar
Hajós, M. 1976. Upper Eocene and Lower Oligocene Diatomaceae, Archaeomonadaceae, and Silicoflagellatae in southwestern Pacific sediments, Deep Sea Drilling Project, Leg 29, p. 817883. In Hollister, C. D. et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Volume 35. Washington, D.C.Google Scholar
Hajós, M., and Stradner, H. 1975. Late Cretaceous Archaeomonadaceae, Diatomaceae, and Silicoflagellatae from the South Pacific Ocean, Deep Sea Drilling Project, Leg 29, site 275, p. 9131009. In Kennett, J. P. et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Volume 29. Washington, D.C.Google Scholar
Hanna, G. D. 1931. Diatoms and silicoflagellates of the Kreyenhagen Shale. California Department of Natural Resources, Division of Mines, 27:187201.Google Scholar
Harwood, D. M. 1988. Upper Cretaceous and lower Paleocene diatom and silicoflagellate biostratigraphy of Seymour Island, eastern Antarctic Peninsula, p. 55129. In Feldmann, R. M. and Woodburne, M. O. (eds.), Geology and Paleontology of Seymour Island, Antarctic Peninsula. Geological Society of America Memoir 169.Google Scholar
Harwood, D. M., and Gersonde, R. 1990. Lower Cretaceous diatoms from ODP Leg 113 site 693 (Weddell Sea). Part 2: Resting spores, chrysophycean cysts, an endoskeletal dinoflagellate, and notes on the origin of diatoms, p. 403425. In Barker, P. F. et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, Volume 113. Washington, D.C.Google Scholar
Kitchell, J. A., and Clark, D. L. 1982. Late Cretaceous-Paleogene paleogeography and paleocirculation: evidence of north polar upwelling. Palaeogeography, Palaeoclimatology, Palaeoecology, 40:135165.CrossRefGoogle Scholar
Kitchell, J. A., Clark, D. L., and Gombos, A. M. 1986. Biological selectivity of extinction: a link between background and mass extinction. Palaios, 1:504511.Google Scholar
Langseth, M. G., Lachenbruch, A. H., and Marshall, B. V. 1990. Geothermal observations in the Arctic regions, p. 133151. In Grantz, A., Johnson, L., and Sweeney, J. F. (eds.), The Arctic Ocean Region, The Geology of North America, Volume L. Geological Society of America.Google Scholar
Lawver, L. A., Muller, R. D., Srivastava, S. P., and Roest, W. 1990. The opening of the Arctic Ocean, p. 2962. In Bleil, U. and Thiede, J. (eds.), Geological History of the Polar Oceans: Arctic versus Antarctic. NATO ASI Series, Volume 308, Kluwer Academic Publishers, Dordrecht.Google Scholar
Ling, H. Y. 1985. Early Paleogene silicoflagellates and ebridians from the Arctic Ocean. Paleontological Society of Japan, 138:7993.Google Scholar
Ling, H. Y., McPherson, L. M., and Clark, D. L. 1973. Late Cretaceous (Maestrichtian) silicoflagellates from the Alpha Cordillera of the Arctic Ocean. Science, 180:13601361.Google Scholar
Long, J., Fuge, D. P., and Smith, J. 1946. Diatoms of the Moreno Shale. Journal of Paleontology, 20:89119.Google Scholar
Moshkovitz, S., Ehrlich, A., and Soudry, D. 1983. Siliceous microfossils of the Upper Cretaceous Mishash Formation, central Negev, Israel. Cretaceous Research, 4:173194.Google Scholar
Mudie, P. J., and Blasco, S. M. 1985. Lithostratigraphy of the CESAR cores, p. 5999. In Jackson, H. R., Mudie, P. J., and Blasco, S. M. (eds.), Initial Geological Report on CESAR. Geological Survey of Canada Paper 84-22.Google Scholar
Palmer, A. J. M. 1984. Implications of diatom biostratigraphy and biogeography in the Eocene North Atlantic Ocean. Unpubl. Ph.D. dissertation, University of South Carolina, Columbia, 276 p.Google Scholar
Phillips, R. L., Grantz, A., and Mullen, M. W. 1990. Logs of 10 cores taken from POLAR STAR. U.S. Geological Survey Open File Report 90-51.Google Scholar
Schrader, H. J. 1973. Proposal for a standardized method of cleaning diatom-bearing deep-sea and land-exposed marine sediments. Nova Hedwigia Beihefte, 45:403409.Google Scholar
Schrader, J. J., and Fenner, J. 1976. Norwegian Sea Cenozoic diatom biostratigraphy, Part 1, p. 9211099. In Talwani, M. et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Volume 39. Washington, D.C.Google Scholar
Sims, P. A., and Hasle, G. R. 1987. Two Cretaceous Stellarima species: S. steinyi and S. distincta; their morphology, palaeogeography and phylogeny. Diatom Research, 2:229240.Google Scholar
Sims, P. A., and Ross, R. 1988. Some Cretaceous and Palaeogene Trinacria (diatom) species. Bulletin of the British Museum of Natural History, 18:275322.Google Scholar
Sorgenfrei, T. 1964. Deep tests in Denmark, 1935-1959. Danmarks Geologiske Undersoegelse 3. Rapport, 36:1146.Google Scholar
Strelnikova, N. I. 1974. Diatomovyye vodorosli mezozoya, p. 101108. In Glezer, Z. I. (ed.), Diatomovyye vodorosli SSSR, iskopayemyye i sovremennyye. Izdatelstvo Nauka Leningrad, USSR.Google Scholar
Strelnikova, N. I. 1975. Diatoms of the Cretaceous Period. Nova Hedwigia Beihefte, 53:311321.Google Scholar
Wall, J. H. 1975. Diatoms and radiolarians from the Cretaceous System of Alberta—a preliminary report, p. 391410. In Caldwell, W. G. E. (ed.), The Cretaceous System in the Western Interior of North America. Geological Association of Canada, Special Paper 13.Google Scholar
Werner, D. 1977. The Biology of Diatoms. University of California Press, Berkeley, 284 p.Google Scholar
Wiesner, H. 1936. Sur la découverte de diatommées dans et autres microfossiles peu commus dans le Crétacé Supérieur de la Bohême. Annales de Protistologie, 5:151155.Google Scholar