Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T11:57:10.313Z Has data issue: false hasContentIssue false

Revision and evaluation of the systematic affinity of the calcitarch genus Pithonella based on exquisitely preserved Turonian material from Tanzania

Published online by Cambridge University Press:  14 July 2015

Jens E. Wendler
Affiliation:
Smithsonian Institution, NMNH, Department of Paleobiology, P.O. Box 37012, Washington DC, 20013-7012, USA Bremen University, Geoscience Department, P.O. Box 330440, 28334 Bremen, Germany,
Ines Wendler
Affiliation:
Smithsonian Institution, NMNH, Department of Paleobiology, P.O. Box 37012, Washington DC, 20013-7012, USA Bremen University, Geoscience Department, P.O. Box 330440, 28334 Bremen, Germany,
Brian T. Huber
Affiliation:
Smithsonian Institution, NMNH, Department of Paleobiology, P.O. Box 37012, Washington DC, 20013-7012, USA

Abstract

Extraordinarily well-preserved pithonellid microfossils (calcitarchs, “calcispheres”) from the Turonian (upper Cretaceous) of Tanzania reveal previously unknown morphological traits, crystallographic patterns, and chemical signatures, providing new insight to this enigmatic group of microfossils. Using combined transmitted-reflected light microscopy, scanning electron microscope imagery, electron microprobe elemental analysis and stable isotope geochemistry, the present study reveals four new aspects of the genus Pithonella, notably, the following. An affinity with cyst-forming organisms, potentially the dinoflagellates, is indicated by the presence of a hatch opening and corresponding operculum. The pristine outer wall architecture consists of thin, smooth shingle-shaped plates with regular rows of slit-shaped pores and an apical sub-angular or circular pore. This primary surface pattern is significantly different from previous descriptions of an outer wall consisting of “parquet-shaped” prismatic crystal rows; this latter surface pattern is formed by secondary overgrowth. The crystallographic pattern of the inner wall is crypto-crystalline. Unaltered pithonellids reveal a calcite chemistry characterized by comparably high Mg-contents, relatively enriched stable carbon isotope values, and stable oxygen values indicating a surface water habitat. Based on these previously unseen traits, the diagnosis of the genus Pithonella is emended. A new species, Pithonella diconica, is described from the lower-middle Turonian sediments of Tanzania.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andri, E. 1972. Mise au point et données novelles sur la famille des Calcisphaerulidae Bonet 1956: Les genres Bonetocardiella, Pithonella, Calcisphaerula et Stomiosphaera. Revue de Micropaléontologie, 15:1234.Google Scholar
Bein, A. and Reiss, Z. 1976. Cretaceous Pithonella from Israel. Micropaleontology, 22:8391.CrossRefGoogle Scholar
Bignot, G. and Lezaud, L. 1964. Contribution à l'étude des Pithonella de la Craie Parisienne. Revue de Micropaléontologie, 7:138152.Google Scholar
Bolli, H. M. 1974. Jurassic and Cretaceous Calcisphaerulidae from DSDP leg 27, Eastern Indian Ocean. Initial Reports of the Deep Sea Drilling Project, 27:843907.Google Scholar
Bonet, F. 1956. Zonificación microfaunística de las calizas cretácicas del este de México. Boletin de la Asociación Mexicana de Geólogos Petroleros, 8:389488.Google Scholar
Borza, K. 1972. Neue Arten der Gattungen Cadosina Wanner, Pithonella Lorenz und Palinosphaera Reinsch aus der oberen Kreide. Geologica Carpathica, 23:139150.Google Scholar
Bütschli, O. 1885. Dinoflagellata. Dr. H. G. Bronn's Klassen und Ordnungen des Thier-Reichs, wissenschaftlich dargestellt inWort und Bild. II. Abtheilung: Mastigophora. C. F. Winter'sche Verlagshandlung, Leipzig und Heidelberg, p. 9061029.Google Scholar
Colom, G. 1955. Jurassic–Cretaceous pelagic sediments of the western Mediterranean zone and the Atlantic area. Micropaleontology, 1:109124.CrossRefGoogle Scholar
Dali-Ressot, M.-D. 1987. Les Calcisphaerulidae des terrains Albien a Maastrichtien de Tunisie centrale (Bireno, J. et Bou el Ahneche, J.): Intérêt systématique, stratigraphique et paléogéographique. Unpublished Ph.D. dissertation, University of Tunis, Tunis, 191p.Google Scholar
Deflandre, G. 1947. Calciodinellum nov. gen., premier représentant d'une famille nouvelle de dinoflagellés à thèque calcaire. Comptes rendus hebdomadaires des séances de l'Académie des sciences, 224:17811782.Google Scholar
Dias-Brito, D. 2000. Global stratigraphy, palaeobiogeography and palaeoecology of Albian–Maastrichtian pithonellid calcispheres: Impact on Tethys configuration. Cretaceous Research, 21:315349.CrossRefGoogle Scholar
Dufour, T. 1968. Quelques remarques sur les organismes Incertae sedis de la famille des Calcisphaerulidae Bonet 1956. Compte rendu hebdomadaire des séances de l'Académie des sciences, Série D, 266:19471949.Google Scholar
Ehrenberg, C. G. 1831. Animalia evertebrata, p. [unpaginated]. InHemprich, P. C. and Ehrenberg, C. G.(eds.), Symbolae physicae seu icones et descriptiones naturalium novorum aut minus cognitorum quae ex itineribus Lybiam Aegyptum Nubiam Dongalam Syriam Arabiam et Habessinian. Pars Zoologica. Abhandlungen der deutschen Akademie der Wissenschaften.Google Scholar
Elbrächter, M., Gottschling, M., Hildebrand-Habel, T., Keupp, H., Kohring, R., Lewis, J., Meier, K. J. S., Montresor, M., Streng, M., Versteegh, G. J. M., Willems, H., and Zonneveld, K. 2008. Establishing an Agenda for Calcareous Dinoflagellate Research (Thoracosphaeraceae, Dinophyceae) including a nomenclatural synopsis of generic names. Taxon, 57:12891303.CrossRefGoogle Scholar
Evitt, W. R. 1967. Dinoflagellate studies II. The archeopyle. Stansford University Publications Geological Sciences, 10 (3):183.Google Scholar
Evitt, W. R. 1985. Sporopollenin dinoflagellate cysts: Their morphology and interpretation. AASP Monograph Series, 1:1333.Google Scholar
Farzadi, P. 2006. The development of middle Cretaceous carbonate platforms, Persian Gulf, Iran: Constraints from seismic stratigraphiy, well and biostratigraphy. Petroleum Geoscience, 12:5968.CrossRefGoogle Scholar
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., and Williams, G. L. 1993. A classification of living and fossil dinoflagellates. Micropaleontology Special Publication 7, 351p.Google Scholar
Friedrich, O. and Meier, K. J. S. 2003. Stable isotopic indication for the cyst formation depth of Campanian/Maastrichtian calcareous dinoflagellates. Micropaleontology, 49:375380.CrossRefGoogle Scholar
Friedrich, O. and Meier, K. J. S. 2006. Suitability of stable oxygen and carbon isotopes of calcareous dinoflagellate cysts for paleoclimatic studies: Evidence from the Campanian/Maastrichtian cooling phase. Palaeogeography, Palaeoclimatology, Palaeoecology, 239:456469.CrossRefGoogle Scholar
Fütterer, D. K. 1977. Distribution of calcareous dinoflagellates in Cenozoic sediments of Site 366, Eastern North Atlantic. Initial Reports of the Deep Sea Drilling Project, 41:709737.Google Scholar
Fütterer, D. K. 1984. Pithonelloid calcareous dinoflagellates from the upper Cretaceous and cenozoic of the southeastern Atlantic Ocean, deep Sea Drilling Project Leg–74. Initial Reports of the Deep Sea Drilling Project, 74:533541.Google Scholar
Gao, X., Dodge, J. D., and Lewis, J. 1989. An ultrastructural study of planozygotes and encystment of a marine dinoflagellate, Scrippsiella sp. British Phycological Journal, 24:153165.Google Scholar
Haeckel, E. 1894. Systematische Phylogenie. Entwurf eines natürlichen Systems der Organismen auf Grund ihrer Stammesgeschichte, I. Systematische Phylogenie der Protisten und Pflanzen. Reimer, Berlin, 400p.Google Scholar
Ho, T.-Y., Quigg, A., Finkel, Z. V., Milligan, A. J., Wyman, K., Falkowski, P. G., and Morel, F. M. M. 2003. The elemental composition of marine phytoplankton. Journal of Phycology, 39:11451159.CrossRefGoogle Scholar
Höll, C., Zonneveld, K. A. F., and Willems, H. 1998. On the ecology of calcareous dinoflagellates: The quaternary eastern Equatorial Atlantic. Marine Micropaleontology, 33:125.CrossRefGoogle Scholar
Huber, B. T. and Petrizzo, M. R.In Press. Evolution and taxonomic study of the Cretaceous planktonic foraminifer genus Helvetoglobotruncana Reiss, 1957. Journal of Foraminiferal Research, 44.Google Scholar
Janofske, D. 1992. Kalkiges Nannoplankton, insbesondere kalkige Dinoflagellaten-Zysten der alpinen Ober-Trias: Taxonomie, Biostratigraphie und Bedeutung für die Phylogenie der Peridiniales. Berliner Geowissenschaftliche Abhandlungen Reihe E, 4:153.Google Scholar
Janofske, D. 1996. Ultrastructure types in recent calcispheres. Bulletin de l'Institut océanographique, 14:295303.Google Scholar
Janofske, D. and Karwath, B. 2000. Oceanic calcareous dinoflagellates of the equatorial Atlantic Ocean: Cyst-theca relationship, taxonomy and aspects on ecology, p. 93136. InKarwath, B.(ed.), Ecological Studies on Living and Fossil Calcareous Dinoflagellates of the Equatorial and Tropical Atlantic Ocean. Volume 152. Bremen University Berichte, Bremen.Google Scholar
Jiménez Berrocoso, Á., Huber, B. T., Macleod, K. G., Petrizzo, M. R., Lees, J. A., Wendler, I., Coxall, H., Mweneinda, A. K., Falzoni, F., Birch, H., Singano, J. M., Haynes, S., Cotton, L., Wendler, J., Bown, P. R., Robinson, S., and Gould, J. 2012. Lithostratigraphy, biostratigraphy and chemostratigraphy of upper Cretaceous and Paleocene sediments from southern Tanzania: Tanzania Drilling Project Sites 27–35. Journal of African Earth Sciences, 70:3657.CrossRefGoogle Scholar
Jiménez Berrocoso, Á., Macleod, K. G., Huber, B. T., Lees, J. A., Wendler, I., Bown, P. R., Mweneinda, A. K., Isaza Londoño, C., and Singano, J. M. 2010. Lithostratigraphy, biostratigraphy and chemostratigraphy of upper Cretaceous sediments from southern Tanzania: Tanzania Drilling Project Sites 21 to 26. Journal of African Earth Sciences, 57:4769.CrossRefGoogle Scholar
Kaufmann, F. J. 1865. Polythalamien des Seewerkalkes, p. 194199. InHeer, O.(ed.), Die Urwelt der Schweiz, Zuerich.Google Scholar
Kerntopf, B. 1997. Dinoflagellate distribution patterns and preservation in the equatorial Atlantic and offshore North-West Africa. Berichte Fachbereich Geowissenschaften Bremen, 103:1137.Google Scholar
Keupp, H. 1981. Calcareous dinoflagellate-cysts of the boreal lower Cretaceous (lower Hauterivian to lower Albian. Facies, 5:1190.CrossRefGoogle Scholar
Keupp, H. 1987. Die kalkigen Dinoflagellatenzysten des Mittelalb bis Untercenoman von Escalles/Boulonnais (N-Frankreich). Facies, 16:621.CrossRefGoogle Scholar
Keupp, H. 1990. A new pithonelloid calcareous dinoflagellate cyst from the upper Cretaceous of South Dakota/U.S.A. Facies, 22:4758.CrossRefGoogle Scholar
Keupp, H. and Kienel, U. 1994. Wandstrukturen bei Pithonelloideae (Kalkige Dinoflagellaten-Zysten): Biomineralisation und systematische Konsequenzen. Abhandlungen der Geologischen Bundesanstalt, 50:197217.Google Scholar
Keupp, H., Monnet, B., and Kohring, R. 1991. Morphotaxa bei kalkigen Dinoflagellaten-Zysten und ihre problematische Systematisierung. Berliner geowissenschaftliche Abhandlungen A, 134:161185.Google Scholar
Kienel, U. 1994. Die Entwicklung der kalkigen Nannofossilien und der kalkigen Dinoflagellaten-Zysten an der Kreide/Tertiär-Grenze in Westbrandenburg im Vergleich mit Profilen in Nordjütland und Seeland (Dänemark). Berliner Geowissenschaftliche Abhandlungen Reihe E, 12:88.Google Scholar
Kohn, M. and Zonneveld, K. A. F. 2010. Calcification depth and spatial distribution of Thoracosphara heimii; implications for palaeoceanographic reconstructions. Deep-Sea Research I, 57:15431560.CrossRefGoogle Scholar
Kohring, R., Gottschling, M., and Keupp, H. 2005. Examples for character traits and palaeoecological significance of calcareous dinoflagellates. Paläontologische Zeitschrift, 79:7991.CrossRefGoogle Scholar
Locker, S. 1967. Die Sphaeren der Oberkreide und die sogenannte Orbulinaritfazies. Geologie, 16:850859.Google Scholar
Lorenz, T. 1902. Geologische Studien im Grenzbereich zwischen helvetischer und ostalpiner Fazies. II. Teil: Südlicher Rhaetikon. Berichte der naturforschenden Gesellschaft Freiburg i. Br., 12:3462.Google Scholar
Macleod, K. G., Huber, B. T., Jiménez Berrocoso, Á., and Wendler, I.In press. A stable, hot and ice-free Cretaceous greenhouse based on Turonian samples from Tanzania. Geology.Google Scholar
Marszalek, D. S. 1975. Calcisphere ultrastructure and skeletal aragonite from the algae Acetabularia antillana. Journal of Sedimentary Petrology, 45:266271.CrossRefGoogle Scholar
Masters, B. A. and Scott, R. W. 1978. Microstructure, affinities and systematics of Cretaceous calcispheres. Micropaleontology, 24:210221.CrossRefGoogle Scholar
Meier, K. J. S., Engemann, N., Gottschling, M., and Kohring, R. 2009. Die Bedeutung der Struktur der Zystenwand kalkiger Dinoflagellaten (Thoracosphaeraceae, Dinophyceae). Berliner palaeobiologische Abhandlungen, 10:245256.Google Scholar
Norris, R. D. 1998. Recognition and macroevolutionary significance of photosymbiosis in molluscs, corals, and foraminifera. The Paleontological Society Papers, 4:68100.CrossRefGoogle Scholar
Odin, G. S. 2011. Gilianelles: Late Cretaceous microproblematica from Europe and Central America. Palaeontology, 54:133144.CrossRefGoogle Scholar
Pascher, A. 1914. Über Flagellaten und Algen. Berichte der Deutschen Botanischen Gesellschaft Berlin, 32:136160.Google Scholar
Piryaeu, A., Reijmer, J. J. G., Van Buchem, F. S. P., Yazdi-Moghadam, M., Sadouni, J., and Danelian, T. 2011. The influence of Late Cretaceous tectonic processes on sedimentation patterns along the northeastern Arabian plate margin (Fars Province, SW Iran). Journal of the Geological Society, Special Publications, 168:235250.Google Scholar
Schiller, J. 1930. Coccolithineae, p. 89267. InRabenhorst, L.(ed.), Kryptogamen Flora von Deutschland, Osterreich und der Schweiz. Volume 10. Akademische Verlagsgesellschaft, Leipzig.Google Scholar
Solms-Laubach, H. 1895. Monograph of the Acetabularieae. Transactions of the Linnean Society, 5:139.Google Scholar
Streng, M., Hildebrand-Habel, T., and Willems, H. 2004. A proposed classification of archeopyle types in calcareous dinoflagellate cysts. Journal of Paleontology, 78:456483.2.0.CO;2>CrossRefGoogle Scholar
Versteegh, G. J. M. 1993. New Pliocene and Pleistocene calcareous dinoflagellate cysts from southern Italy and Crete. Review of Palaeobotany and Palynology, 78:353380.CrossRefGoogle Scholar
Versteegh, G. J. M., Servais, T., Streng, M., Munnecke, A., and Vachard, D. 2009. A discussion and proposal concerning the use of the term calcispheres. Palaeontology, 52:343348.CrossRefGoogle Scholar
Villain, J.-M. 1975. “Calcispherulidae” (incertae sedis) du Cretacé supérieur du Limbourg (Pays-Bas), et d'autre régions. Palaeontographica Abt. A, 149:193242.Google Scholar
Villain, J.-M. 1977. Les Calcisphaerulidae: Architectures, calcification de la paroi et phylogenèse. Paleontographica Apt. A, 159:139177.Google Scholar
Villain, J.-M. 1981. Les Calcisphaerulidae: Intérêt stratigraphique et paléoécologique. Cretaceous Research, 2:435438.CrossRefGoogle Scholar
Villain, J.-M. 1992. Calciphaerulidae d'Afrique: Les stades juvéniles de Pithonella Lorenz, 1902, structure et minéralisation des tests Geologie Africaine: Coll. Geol. Libreville, recueil des communication, 6–8, May 1991, p. 339–245.Google Scholar
Vogler, J. 1941. Oberer Jura von Misel (Niederländisch–Ostindien). Paleontographica, 4:245293.Google Scholar
Voigt, E. and Häntzschel, W. 1964. Gradierte Schichtung in der Oberkreide Westfalens. Fortschritte in der Geologie von Rheinland und Westfalen, 7:495548.Google Scholar
Wefer, G. 1985. Die Verteilung stabiler Isotope in Kalkschalen mariner Organismen. Geologisches Jahrbuch Reihe A, 82:3111.Google Scholar
Weiner, S. and Addadi, L. 2011. Crystallization pathways in biomineralization. Annual Review of Materials Research, 41:2140.CrossRefGoogle Scholar
Wendler, I., Huber, B. T., Macleod, K. G., and Wendler, J. E. 2011. Early evolutionary history of Tubulogenerina and Colomia, with new species from the Turonian of East Africa. Journal of Foraminiferal Research, 41:384400.CrossRefGoogle Scholar
Wendler, I., Huber, B. T., Macleod, K. G., and Wendler, J. E. 2013. Stable oxygen and carbon isotope systematics of exquisitly preserved Turonian foraminifera from Tanzania—understanding isotope signatures in fossils. Marine Micropaleontology, 102:133.CrossRefGoogle Scholar
Wendler, J. E., Gräfe, K. U., and Willems, H. 2002a. Palaeoecology of calcareous dinoflagellate cysts in the mid-Cenomanian Boreal Realm: Implications for the reconstruction of palaeoceanography of the NW European shelf sea. Cretaceous Research, 23:213229.CrossRefGoogle Scholar
Wendler, J. E., Gräfe, K. U., and Willems, H. 2002b. Reconstruction of mid-Cenomanian orbitally forced palaeoenvironmental changes based on calcareous dinoflagellate cysts. Palaeogeography, Palaeoclimatology, Palaeoecology, 179:1941.CrossRefGoogle Scholar
Wendler, J. E., Wendler, I., Huber, B. T., and Rose, T. 2012. Using cathodoluminescence spectroscopy of Cretaceous calcareous microfossils to distinguish biogenic from early-diagenetic calcite. Microscopy and Microanalysis, 18 (6):19.CrossRefGoogle ScholarPubMed
Wendler, J. E., Wendler, I., and Willems, H. 2001. Orthopithonella collaris sp. nov., a new calcareous dinoflagellate cyst from the K/T boundary (Fish Clay, Stevns Klint/Denmark). Review of Palaeobotany and Palynology, 115:6977.CrossRefGoogle Scholar
Wendler, J. E. and Willems, H. 2002. Distribution pattern of calcareous dinoflagellate cysts across the Cretaceous–Tertiary boundary (Fish Clay, Stevns Klint, Denmark); implications for our understanding of species-selective extinction, p. 265275. InKoeberl, C. and MacLeod, K. G.(eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Paper 356.CrossRefGoogle Scholar
Wendler, J. E. and Willems, H. 2004. Pithonelloid wall-type of the Late Cretaceous calcareous dinoflagellate cyst genus Tetratropis. Review of Palaeobotany and Palynology, 129 (3):133140.CrossRefGoogle Scholar
Wendler, J. E. and Bown, P. 2013. Exceptionally well-preserved Cretaceous microfossils reveal new biomineralization styles. Nature Communications, 4:2052, doi:10.1038/ncomms3052.CrossRefGoogle Scholar
Wetzel, O. 1961. New microfossils from Baltic Cretaceous flintstones. Micropaleontology, 7:337350.CrossRefGoogle Scholar
Willems, H. 1990. Tetratropis, eine neue Kalkdinoflagellaten-Gattung (Pithonelloideae) aus der Oberkreide von Lägerdorf (N-deutschland). Senckenbergiana lethaea, 70:239257.Google Scholar
Willems, H. 1992. Kalk-Dinoflagellaten aus dem Uner-Maastricht der Insel Rügen. Zeitschrift der Deutschen Geologischen Wissenschaften, 20:155178.Google Scholar
Willems, H. 1994. New calcareous dinoflagellates from the upper Cretaceous White Chalk of northern Germany. Review of Palaeobotany and Palynology, 84:5772.CrossRefGoogle Scholar
Young, J. R., Bergen, J. A., Bown, P. R., Burnett, J. A., Fiorentino, A., Jordan, R. W., Kleijne, A., Van Niel, B. E., Romein, A. J. T., and Von Salis, K. 1997. Guidelines for coccolith and calcareous nannofossil terminology. Palaeontology, 40:875912.Google Scholar
Ziveri, P., Stoll, H., Probert, I., Klaas, C., Geisen, M., Ganssen, G., and Young, J. 2003. Stable isotope ‘vital effects' in coccolith calcite. Earth and Planetary Science Letters, 210:137149.CrossRefGoogle Scholar
Zonneveld, K. A. F. 2004. Potential use of stable oxygen isotope composition of Thoracosphaera heimii (Dinophyceae) for upper watercolumn (thermocline) temperature reconstruction. Marine Micropaleontology, 50:307317.CrossRefGoogle Scholar
Zonneveld, K. A. F., Mackensen, A., and Baumann, K.-H. 2007. Stable oxygen isotopes of Thoracosphaera heimii (Dinophyceae) in relationship to temperature; a culture experiment. Marine Micropaleontology, 64:8090.CrossRefGoogle Scholar
Zügel, P. 1994. Verbreitung kalkiger Dinoflagellaten-Zysten im Cenoman/Turon von Westfrankreich und Norddeutschland. Courier Forschungsinstitut Senckenberg, 176:1159.Google Scholar