Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T13:10:28.222Z Has data issue: false hasContentIssue false

Reductio ad absurdum: Testing the evolutionary relationships of Ediacaran and Paleozoic problematic fossils using molecular divergence dates

Published online by Cambridge University Press:  20 May 2016

Ben Waggoner
Affiliation:
Department of Biology, University of Central Arkansas, Conway 72035-5003 USA,
Allen G. Collins
Affiliation:
Museum of Paleontology, University of California, 1101 Valley Life Sciences Building, Berkeley 94720-4780 USA

Abstract

Many of the late Neoproterozoic “Ediacaran fossils” have been referred to the Cnidaria, often on the basis of vague or poorly known features. However, representatives of the living Chondrophorina (=Porpitidae, Hydrozoa), Pennatulacea (Anthozoa), and Coronatae and/or Stauromedusae (Scyphozoa) have all been identified in Ediacaran biotas, based on specific morphological features preserved in a number of specimens. These three cnidarian groups have plausible Paleozoic representatives as well, but many of their Paleozoic fossils are also somewhat problematic. We test these systematic hypotheses by using them to calibrate divergence dates across the Cnidaria, based on an extensive molecular phylogeny of extant cnidarians. In this reductio ad absurdum approach, if a calibration based on one interpretation of a problematic fossil yields a glaringly inconsistent age for a better-known clade, that interpretation is likely to be mistaken. We find that assuming the existence of Pennatulacea and Scyphozoa in the “Ediacara biota” places the root of the Cnidaria between 800 and 1,000 Ma, a figure which is, at least, not out of line with other molecular clock estimates. However, assuming the existence of the Chondrophorina in the Neoproterozoic, or anywhere in the Paleozoic, pushes the root of the Cnidaria back to between 1,500 and 2,000 Ga, which is considerably older than the oldest previous estimates for the origin of the Cnidaria. We suggest that the likeliest explanation is that chondrophorines were not present in the late Precambrian or Paleozoic. The Ediacaran and Paleozoic fossils previously interpreted as chondrophorines probably represent other taxa.

Type
Selected Papers from the Sixth North American Paleontological Convention
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayala, F. J. 1997. Vagaries of the molecular clock. Proceedings of the National Academy of Sciences of the United States of America, 94:77767783.Google Scholar
Ayala, F. J., Rzhetsky, A., and Ayala, F. J. 1998. Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. Proceedings of the National Academy of Sciences of the USA, 95:606611.Google Scholar
Babcock, L. E., and Robison, R. A. 1988. Taxonomy and paleobiology of some Middle Cambrian Scenella (Cnidaria) and hyolithids (Mollusca) from western North America. University of Kansas Paleontological Contributions, Number 121, 22p.Google Scholar
Bengtson, S. 1981. Atractosella, a Silurian alcyonacean octocoral. Journal of Paleontology, 55:281294.Google Scholar
Bengtson, S., Morris, S. Conway, Cooper, B. J., Jell, P. A., and Runnegar, B. N. 1990. Early Cambrian fossils from south Australia. Memoirs of the Association of Australasian Palaeontologists, 9:1364.Google Scholar
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point Formation, Avalon Zone, eastern Newfoundland), p. 89. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian-Cambrian Boundary. New York State Museum and Geological Survey Bulletin, Number 463.Google Scholar
Boschma, H. 1956. Milleporina and Stylasterina, p. F89F106. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. F, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Bromham, L., Rambaut, A., Fortey, R., Cooper, A., and Penny, D. 1998. Testing the Cambrian explosion hypothesis by using a molecular dating technique. Proceedings of the National Academy of Sciences of the USA, 95:1238612389.Google Scholar
Bruton, D. L. 1991. Beach and laboratory experiments with the jellyfish Aurelia and remarks on some fossil “medusoid” traces, p. 125129. In Simonetta, A. M. and Morris, S. Conway (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge.Google Scholar
Chen, Jun-Yuan, and Erdtmann, B.-D. 1991. Lower Cambrian fossil Lagerstätte from Chengjiang, Yunnan, China: insights for reconstructing early metaozoan life, p. 5776. In Simonetta, A. M. and Morris, S. Conway (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge.Google Scholar
Chen, Jun-Yuan, and Zhou, G. 1997. Biology of the Chengjiang fauna. Bulletin of the National Museum of Natural Science (Taiwan), 10:11106.Google Scholar
Collins, A. G. 2002. Phylogeny of Medusozoa and the evolution of cnidarian life cycles. Journal of Evolutionary Biology, 15:418432.Google Scholar
Collins, A. G., Marques, A. C., and Simões, M. G. 2000. The phylogenetic placement of Conulatae within Cnidaria. GSA Abstracts with Programs, 32.Google Scholar
Morris, S. Conway 1993. Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Palaeontology, 36:593635.Google Scholar
Morris, S. Conway, Savoy, L. E., and Harris, G. 1991. An enigmatic organism from the ‘Exshaw’ Formation (Devonian-Carboniferous), Alberta, Canada. Lethaia, 24:139152.CrossRefGoogle Scholar
Doolittle, R. F., Feng, D. F., Tsang, S., Chao, G., and Little, E. 1996. Determining divergence times of the major kingdoms of living organisms with a molecular clock. Science, 271:470477.Google Scholar
Dzik, J. 1991. Is fossil evidence consistent with traditional views of the early metazoan phylogeny? p. 4758. In Simonetta, A. M. and Morris, S. Conway (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge.Google Scholar
Dzik, J. 2002. Possible ctenophoran affinities of the Precambrian “sea-pen” Rangea. Journal of Morphology, 252:315334.Google Scholar
Fedonkin, M. A. 1990. Systematic description of Vendian metazoa, p. 71120. In Sokolov, B. S. and Iwanowski, A. B. (eds.), The Vendian System. Volume 1, Paleontology. Springer-Verlag, Berlin.Google Scholar
Fedonkin, M. A. 1992. Vendian faunas and the early evolution of Metazoa, p. 87129. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Press, New York.Google Scholar
Fedonkin, M. A. 1998. Metameric features in the Vendian metazoans. Italian Journal of Zoology, 65:1117.Google Scholar
Feng, D. F., Cho, G., and Doolittle, R. F. 1997. Determining divergence times with a protein clock: update and recalibration. Proceedings of the National Academy of Sciences of the USA, 94:1302813033.CrossRefGoogle Scholar
Foster, M. W. 1979. Soft-bodied coelenterates in the Pennsylvanian of Illinois, p. 191267. In Nitecki, M. H. (ed.), Mazon Creek Fossils. Academic Press, New York.Google Scholar
Gehling, J. G. 1991. The case for Ediacaran fossil roots to the metazoan tree. Memoirs of the Geological Society of India, 20:181223.Google Scholar
Gehling, J. G., and Rigby, J. K. 1996. Long-expected sponges from the Neoproterozoic Ediacara fauna of South Australia. Journal of Paleontology, 70:185195.Google Scholar
Gehling, J. G., Narbonne, G. M., and Anderson, M. A. 2000. The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology, 43:427456.Google Scholar
Gershwin, L., Lipps, J. H., Dott, R. H. Jr., and Damrow, D. 2001. Late Cambrian jellyfish behavioral taphonomy in central Wisconsin. PaleoBios, 21(S2):56.Google Scholar
Geyer, G. 1994. An enigmatic bilateral fossil from the Lower Cambrian of Morocco. Journal of Paleontology, 68:710716.Google Scholar
Glaessner, M. F. 1984. The Dawn of Animal Life: A Biohistorical Study. Cambridge University Press, Cambridge, xii + 244 p.Google Scholar
Glinski, A. 1956. Plumalina conservata n. sp. (Gorgonaria) aus dem Mittel-Devon der Eifel. Senckenbergiana Lethaea, 37:5357.Google Scholar
Goodman, M., Miyamoto, M. M., and Czelusniak, J. 1987. Pattern and process in vertebrate phylogeny revealed by coevolution of molecules and morphologies, p. 141176. In Patterson, C. (ed.), Molecules and Morphology in Evolution: Conflict or Compromise? Cambridge University Press, Cambridge.Google Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270:598604.Google Scholar
Hagadorn, J. W., and Waggoner, B. M. 2000. Ediacaran fossils from the southwestern Great Basin, United States. Journal of Paleontology, 74:349359.Google Scholar
Hagadorn, J. W., Dott, R. H., and Damrow, D. 2002. Stranded on an Upper Cambrian shoreline: Medusae from Central Wisconsin. Geology, 30:147150.Google Scholar
Hahn, G., and Pflug, H.-D. 1985. Polypenartige Organismen aus dem Jung-Präkambrium (Nama-Gruppe) von Namibia. Geologica et Palaeontologica, 19:113.Google Scholar
Hahn, G., Hahn, R., Leonardos, O. H., Pflug, H.-D., and Walde, D. H. G. 1982. Körperlich erhaltene Scyphozoen-Reste aus dem Jung-präkambrium Brasiliens. Geologica et Palaeontologica, 16:118.Google Scholar
Hahn, G., Hahn, R., Leonardos, O. H., Pflug, H.-D., and Walde, D. H. G. 1982. Körperlich erhaltene Scyphozoen-Reste aus dem Jung-präkambrium Brasiliens. Geologica et Palaeontologica, 16:118.Google Scholar
Han, T.-M., and Runnegar, B. 1992. Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee Iron-Formation, Michigan. Science, 257:232235.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A Geologic Time Scale, 1989 Edition. Cambridge University Press, Cambridge, 263 pp.Google Scholar
Hasegawa, M., Kishino, H., and Yano, T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 21:160174.Google Scholar
Hoffman, H. J. 1988. An alternative interpretation of the Ediacaran (Precambrian) chondrophore Chondroplon Wade. Alcheringa, 12:315318.Google Scholar
Horny, R. 1985. Bellerophacmaea gen. n. (Mollusca) and Palaeolophacmaea Donaldson, 1962 (Coelenterata), an example of homeomorphy in invertebrate paleozoology. Casopis Národniho Muzea v Praze, 154:119124.Google Scholar
Huchon, D., Catzeflis, F. M., and Douzery, E. J. P. 2000. Variance of molecular datings, evolution of rodents and the phylogenetic affinities between Ctenodactylidae and Hystricognathi. Proceedings of the Royal Society of London, Series B: Biological Sciences, 267:393402.Google Scholar
Huchon, D., Madsen, O., Sibbald, M. J. J. B., Ament, K., Stanhope, M. J., Catzeflis, F., de Jong, W. W., and Douzery, E. J. P. 2002. Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Molecular Biology and Evolution, 19:10531065.Google Scholar
Huelsenbeck, J. P., Larget, B., and Swofford, D. L. 2000. A compound Poisson process for relaxing the molecular clock. Genetics, 154:18791892.Google Scholar
Hughes, N. C., Gunderson, G. O., and Weedon, M. J. 2000. Late Cambrian conulariids from Wisconsin and Minnesota. Journal of Paleontology, 74:828838.Google Scholar
Ivantsov, A. 1996. Oldest skeletal remains in the terminal Neoproterozoic of the Russian platform. PaleoBios, 17:S7.Google Scholar
Jenkins, R. J. F. 1985. The enigmatic Ediacaran (late Precambrian) genus Rangea and related forms. Paleobiology, 11:336355.Google Scholar
Jenkins, R. J. F. 1992. Functional and ecological aspects of Ediacarian assemblages, p. 131176. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Press, New York.Google Scholar
Jenkins, R. J. F. 1996. Aspects of the geological setting and palaeobiology of the Ediacara assemblage, p. 3345. In Davies, M., Twidale, C. R., and Tyler, M. J. (eds.), Natural History of the Flinders Ranges. Royal Society of South Australia.Google Scholar
Jensen, S., Droser, M. L., and Gehling, J. G. 2001. A scratch circle origin for the medusoid fossil Kullingia. PaleoBios, 21:S74S75.Google Scholar
Jerre, F. 1994. Anatomy and phylogenetic significance of Eoconularia loculata, a conulariid from Silurian of Gotland. Lethaia, 27:97109.Google Scholar
Kase, T. 1988. Reinterpretation of Brunonia annulata (Yokoyama) as an early Cretaceous carinariid mesogastropod (Mollusca). Journal of Paleontology, 62:766771.Google Scholar
Kishino, H., Thorne, J. L., and William, B. J. 2001. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Molecular Biology and Evolution, 18:352361.Google Scholar
Landing, E., and Narbonne, G. M. 1992. Scenella and “a chondrophorine (medusoid hydrozoan) from the basal Cambrian (Placentian) of Newfoundland.” Journal of Paleontology, 66:338.Google Scholar
Lee, M. S. Y. 1999. Molecular clock calibrations and metazoan divergence dates. Journal of Molecular Evolution, 49:385391.Google Scholar
Leslie, S. A., Babcock, L. E., Grunow, A. M., and Sadowski, G. R. 2001. Paleobiology and paleobiogeography of Corumbella, a Late Neoproterozoic Ediacaran-grade organism. PaleoBios, 21:S83S84.Google Scholar
Lindström, M. 1978. An octocoral from the Lower Ordovician of Sweden. Geologica et Palaeontologica, 12:4147.Google Scholar
Lynch, M. 1999. The age and relationships of the major animal phyla. Evolution, 53:319325.Google Scholar
Martin, M. V., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science, 288:841846.Google Scholar
Moore, R. C., and Harrington, H. J. 1956. Scyphozoa, p. F27F38. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. F, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Nei, M., and Glazko, G. 2002. Estimation of divergence times for a few mammalian and several primate species. Journal of Heredity, 93:157164.Google Scholar
Nikoh, N., Iwabe, N., Kuma, K., Ohno, M., Sugiyama, T., Watanabe, Y., Yasui, K., Shi-cui, Z., Hori, K., Shimura, Y., and Miyata, T. 1997. An estimate of divergence time of Parazoa and Eumetazoa and that of Cephalochordata and Vertebrata by aldolase and triose phosphate isomerase clocks. Journal of Molecular Evolution, 45:97106.Google Scholar
Oliver, W. A. Jr. 1984. Conchopeltis: its affinities and significance. Palaeontographica Americana, 54:141147.Google Scholar
Oliver, W. A. Jr. 1996. Origins and relationships of Paleozoic coral groups and the origin of the Scleractinia. In Stanley, G. D. Jr. (ed.), Paleobiology and Biology of Corals. Paleontological Society Papers 1, p. 107134.Google Scholar
Otto, M. 2000. Supposed soft tissue preservation in the Hunsrückschiefer (Lower Devonian, Rheinisches Schiefergebirge): the example of brachiopods. Paläontologische Zeitschrift, 74:7989.Google Scholar
Peterson, K., and Takacs, C. 2002. Fossils, molecular clocks and the Cambrian explosion. Geological Society of America Abstracts with Programs, 33(7):A440.Google Scholar
Posada, D., and Crandall, K. A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14:817818.Google Scholar
Rambaut, A., and Bromham, L. 1998. Estimating divergence dates from molecular sequences. Molecular Biology and Evolution, 15:442448.Google Scholar
Retallack, G. J. 1994. Were the Ediacaran fossils lichens? Paleobiology, 20:523544.Google Scholar
Rodríguez-Trelles, F., Tarrío, R., and Ayala, F. J. 2002. A methodological bias toward overestimation of molecular evolutionary time scales. Proceedings of the National Academy of Sciences of the USA, 99:81128115.Google Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, London, 149:607613.Google Scholar
Seilacher, A. 1994. Early life on Earth: Late Proterozoic fossils and the Cambrian explosion, p. 389400. In Bengtson, S. (ed.), Early Life on Earth. Nobel Symposium 84. Columbia University Press, New York.Google Scholar
Sokolov, B. S. 1968. Vendian and Early Cambrian sabelliditida (Pogonophora) of the USSR. Proceedings of the IPU, International Geological Congress, 23:7986.Google Scholar
Sorauf, J. E., and Savarese, M. E. 1995. Lower Cambrian coral from South Australia. Palaeontology, 38:757770.Google Scholar
Stanley, G. D. Jr. 1986. Chondrophorine hydrozoans as problematic fossils, p. 6886. In Hoffman, A. and Nitecki, M. H. (eds.), Problematic Fossil Taxa. Oxford University Press, New York.Google Scholar
Stanley, G. D. Jr., and Senowbari-Baryan, B. 1999. Upper Triassic reef fauna from the Quesnel terrane, Central British Columbia, Canada. Journal of Paleontology, 73:787802.Google Scholar
Sun, Wei-guo. 1986. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China: Paracharnia gen. nov. Precambrian Research, 31:361375.Google Scholar
Swofford, D. L. 2000. PAUP. Phylogenetic Analysis Using Parsimony ( and Other Methods). Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Van Iten, H. 1991. Evolutionary affinities of conulariids, p. 145155. In Simonetta, A. M. and Morris, S. Conway (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge.Google Scholar
Wade, M. 1972. Hydrozoa and Scyphozoa and other medusoids from the Precambrian Ediacara fauna, South Australia. Palaeontology, 15:197225.Google Scholar
Waggoner, B. M. 1998. New approaches to the systematics and paleobiology of the late Precambrian soft-bodied biotas. Unpublished Ph.D. thesis, University of California at Berkeley, xv + 266 pp.Google Scholar
Waggoner, B. M. 1999. Los comienzos de la historia evolutiva de los artrópodos: qué nos pueden contar los fósiles? p. 115131. In Melic, A., de Haro, J. J., Méndez, M., and Ribera, I. (eds.), Evolución y Filogenia de Arthropoda. Sociedad Entomologica Aragonesa, Barcelona.Google Scholar
Waggoner, B. M., and Collins, A. G. 1995. A new chondrophorine (Cnidaria, Hydrozoa) from the Cadiz Formation (Middle Cambrian) of California. Paläontologische Zeitschrift, 69:716.Google Scholar
Werner, B. 1966. Stephanoscyphus (Scyphozoa, Coronatae) und seine direkte abstammung von den fossilen Conulata. Helgolander Wissenschaftliche Meeresuntersuchungen, 13:317347.Google Scholar
Williams, G. C. 1992. Biotic diversity, biogeography, and phylogeny of pennatulacean octocorals associated with coral reefs in the Indo-Pacific. Proceedings of the Seventh International Coral Reef Symposium, 2:729735.Google Scholar
Williams, G. C. 1995. Living genera of sea pens (Coelenterata: Octocorallia: Pennatulacea): illustrated key and synopses. Zoological Journal of the Linnaean Society, 113:93140.Google Scholar
Wray, G. A., Levinton, J. S., and Shapiro, L. H. 1996. Molecular evidence for deep preCambrian divergences among metazoan phyla. Science, 274:568573.Google Scholar
Yochelson, E. L., Stürmer, W., and Stanley, G. D. Jr. 1983. Plectodiscus discoideus (Rauff): a redescription of a chondrophorine from the Early Devonian Hunsrück Slate, West Germany. Paläontologische Zeitschrift, 57:3968.Google Scholar
Zhao, Y., and Bengtson, S. 1999. Embryonic and post-embryonic development of the Early Cambrian cnidarian Olivooides. Lethaia, 32:181195.Google Scholar
Zhuravlev, A. Yu. 1993. Were Ediacaran Vendobionta multicellulars? Neue Jahrbuch für Geologie und Paläontologie, 190:299314.Google Scholar
Zhuravlev, A. Yu. 1999. A new coral from the Lower Cambrian of Siberia. Paleontological Journal, 33:502508.Google Scholar