Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T19:41:59.896Z Has data issue: false hasContentIssue false

Redescription of Anomalosaepia (Cephalopoda: Coleoida): a sepioid with a bimineralic calcite and aragonite skeleton

Published online by Cambridge University Press:  14 July 2015

Thomas E. Yancey
Affiliation:
1Department of Geology & Geophysics, Texas A&M University, College Station, TX 77843, USA,
Christopher L. Garvie
Affiliation:
2Texas Natural Science Center, University of Texas at Austin, Austin, TX 78705, USA

Abstract

Redescription of the genus Anomalosaepia shows that the anomalous characters reported as defining the genus are partly preservational artifacts resulting from dissolution of aragonite from a skeleton composed of both calcite and aragonite. Thus, the presence of a slit-shaped opening and canal-like cavity in the skeleton is not supported. The skeleton of Anomalosaepia is composed of subequal amounts of aragonite and calcite, with an inner layer composed of radial-prismatic and fan-radial aragonite and an outer layer of elongate, non-prismatic calcite crystals secreted by the animal. The calcite microstructure has not been previously described. A new family, Anomalosaepiidae, is established and one new species, A. parmula, described. The species A. mariettani and A. andreanae are synonomized with A. alleni. The species A. jeletzkyi is valid and A. vernei is probably valid, but needs more documentation. Examination of North American and European specimens reveals that a bimineralic composition is a characteristic feature of species in the families Anomalosaepiidae and Belosaepiidae and implies that, in general, sepioids have a bimineralic skeleton with some calcite.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, W. and Rees, W. J. 1966. A Review of the Cephalopod Family Sepiidae. British Museum (Natural History), The John Murray Expedition 1933-34, Scientific Reports, 11: 1165.Google Scholar
Allen, J. E. 1968. New species of Sepiida (Mollusca, Cephalopoda) from the Eocene of the Gulf Coast. Tulane Studies in Geology, 6: 3337.Google Scholar
Bandel, K. and Boletzky, S. V. 1979. A comparative study of the structure, development and morphological relationships of chambered cephalopod shells. Veliger, 21: 313354.Google Scholar
Bandel, K. and Hemleben, C. 1975. Anorganisches Krystallwachstum bei lebender Mollusken. Paläontologische Zeitschrift, 49: 298320.Google Scholar
Bandel, K. and Spaeth, C. 1988. Structural differences in the ontogeny of some belemnite rostra, p. 247261. In Wiedmann, J. and Kullmann, J. (eds.), Cephalopods Present and Past. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 247-261.Google Scholar
Carter, J. G. 1990. Skeletal biomineralization: patterns, processes and evolutionary trends. Van Nostrand Reinhold, New York, 1: 1832.Google Scholar
Carter, J. G., Gallagher, P. E., Valone, R. E., and Rossbach, T. J. 1988. Fossil collecting in North Carolina. North Carolina Department of Natural Resources, Geological Survey Section, Bulletin, 89: 189.Google Scholar
Dauphin, T. 1984. Microstructures des Céphalopodes. IV Le “rostre” de Belosepia (Dibranchiata). Paläontologische Zeitschrifte, 58: 99117.Google Scholar
Dauphin, Y. 1986. Microstructure des coquilles de Céphalopodes: la partie apicale de Belopterina (Coleoidea). Bulletin du Museum National d'Histoire Naturelle de Paris (3èm sér.), 8: 5375.Google Scholar
Dauphin, Y., Williams, C. T., and Barskov, I. S., 2007, Aragonitic rostra of the Turonian belemnitid Goniocamax: arguments from diagenesis. Acta Palaeontologica Polonica, 52: 8597.Google Scholar
Doguzhaeva, L. A. 2000. A rare coleoid mollusk from the Upper Jurassic of central Russia. Acta Palaeontologica Polonica, 45: 389406.Google Scholar
Ehrenberg, C. G. 1831. Symbolae Physicae, Evertebrata. I. Mollusca.Google Scholar
Gabb, W. M., 1860. Descriptions of new species of American Tertiary and Cretaceous fossils. Academy of Natural Sciences, Philadelphia, Journal, 2nd series, 4: 375406, pls. 67-69.Google Scholar
Garvie, C. L. 1996. The molluscan macrofauna of the Reklaw Formation, Marquez Member (Eocene: lower Claibornian) in Texas. Bulletins of American Paleontology, 111: 1177.Google Scholar
Hewitt, R. A. and Jagt, J. W. M. 1999. Maastrichtian Ceratisepia and Mesozoic cuttlebone homeomorphs. Acta Palaeontographica Polonica, 44: 305326.Google Scholar
Jeletzky, J. A. 1966. Comparative morphology, phylogeny and classification of fossil Coleoidea. University of Kansas Paleontological Contributions, Mollusca Article, 7: 1162.Google Scholar
Meyer, J. C. 1993. Un nouveau Coleoide Sepioide, Ceratisepia elongata nov. gen., nov. sp. du Paleocene inferieur (Danien) du Vigny. Implications taxonomiques et phylogénétiques, p. 287304. In Elmi, S., Mangold, C., and Aleras, Y. (eds.), Geobios, Memoir 15.Google Scholar
Palmer, K. V. W. 1937. The Claibornian Scaphopoda, Gastropoda and Dibranchiate Cephalopoda of the southern United States. Bulletin of American Paleontology, 7: 1548.Google Scholar
Weaver, P. G. and Ciampaglio, C. N. 2003. A new genus of belosaepiid (Coleoidea) from the Castle Hayne Limestone (Eocene) of southeastern North Carolina. Journal of Paleontology, 77: 11031106.Google Scholar
Yancey, T. E., Garvie, C. L., and Wicksten, M. 2010. The middle Eocene Belosaepia ungula (Cephalopoda: Coleoida) from Texas: structure, ontogeny and function. Journal of Paleontology, 84: 267287.Google Scholar