Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T10:59:44.084Z Has data issue: false hasContentIssue false

Reassessment of Lower Eocene Seggeurius amourensis: aspects of primitive dental morphology in the mammalian order Hyracoidea

Published online by Cambridge University Press:  20 May 2016

Nicholas Court
Affiliation:
Sedgwick Museum, Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, United Kingdom
Mohamed Mahboubi
Affiliation:
Department des Sciences de la Terre, Université d'Oran, B.P. 16, Oran-Essenia, Algèria

Abstract

New lower dental material of the fossil hyracoid mammal, Seggeurius amourensis Crochet, 1986, from Eocene deposits of the Southern Atlas in Algeria, has prompted a reevaluation of the genus. The dentition as a whole is first described in detail, thus providing a more precise characterization of the genus than has hitherto been available. Peculiarities, particularly in upper molar morphology, are sufficient to uphold a generic distinction. However, based largely on lower molar morphology Seggeurius amourensis is transferred from the subfamily Geniohyinae to Saghatheriinae. In the upper molars, absence of a postmetacrista and the presence of a preprotocrista continuous with the parastyle are interpreted as primitive features in hyracoids. In the lower molars, extreme reduction of the paracristid and the presence of a mesoconid are also considered primitive for hyracoids. These features together with small size, bunodonty, low crown height, and very simple premolar morphology indicate that Seggeurius amourensis is the most primitive hyrax yet recovered.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, C. W. 1906. Catalogue of the Tertiary Vertebrata of the Fayum, Egypt. British Museum (Natural History), London, 324 p.Google Scholar
Coiffait, P. E., Coiffait, B., Jaeger, J. J., and Mahboubi, M. 1984. Un nouveau gisement a mammifères fossiles d'âge Éocène supérieur sur le versant sud des Nementcha (Algèrie orientale): découverte des plus anciens rongeurs d'Afrique. Comptes Rendus de l'Académie des Sciences, 299, Série II, 13:893898.Google Scholar
Court, N., and Hartenberger, J. L. 1992. A new species of hyracoid mammal from the Eocene of Tunisia. Palaeontology, 35:309317.Google Scholar
Crochet, J. Y. 1986. Hyracoidea Huxley 1869, p. 24–25. In Mahboubi, M., Ameur, R., Crochet, J. Y., and Jaeger, J. J. (eds.), El Kohol (Saharan Atlas, Algeria): A New Eocene Mammal Locality in Northwestern Africa. Palaeontographica Abteilung A, 192:1549.Google Scholar
Hartenberger, J. L., Martinez, C., and Ben Said, A. 1985. Découverte de mammiferes d'âge Éocène inférieur en Tunisie centrale. Comptes Rendus de l'Académie des Sciences, Paris, Série II, 302:247249.Google Scholar
Huxley, T. H. 1869. An Introduction to the Classification of Animals. J. Churchill and Sons, London, 140 p.CrossRefGoogle Scholar
Mahboubi, M., Ameur, R., Crochet, J. Y., and Jaeger, J. J. 1984. Earliest known proboscidean from the early Eocene of north-west Africa. Nature, 308:543544.CrossRefGoogle ScholarPubMed
Mahboubi, M., Ameur, R., Crochet, J. Y., and Jaeger, J. J. 1986. El Kohol (Saharan Atlas, Algeria): a new Eocene mammal locality in northwestern Africa. Palaeontographica Abteilung A, 192:1549.Google Scholar
Matsumoto, H. 1922. Megalohyrax Andrews and Titanohyrax gen. nov.—a revision of the genera of hyracoids from the Fayum, Egypt. Proceedings of the Zoological Society of London, 1921:839850.Google Scholar
Matsumoto, H. 1926. Contribution to the knowledge of the fossil Hyracoidea of the Fayum, Egypt, with description of several new species. Bulletin of the American Museum of Natural History, 56:253350.Google Scholar
Meyer, G. E. 1978. Hyracoidea, p. 284314. In Maglio, V. J. and Cooke, H. B. S. (eds.), Evolution of African Mammals. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Osborn, H. F. 1899. On Pliohyrax kruppii Osborn, a fossil hyracoid from Samos, lower Pliocene, in the Stuttgart collection—a new type and the first known Tertiary hyracoid, p. 173174. In Proceedings, 4th International Congress of Zoology, Cambridge, 1898.Google Scholar
Rasmussen, D. T. 1989. The evolution of the Hyracoidea: a review of the fossil evidence, p. 5778. In Prothero, D. R. and Schoch, R. M. (eds.), The Evolution of Perissodactyls. Oxford University Press, New York.Google Scholar
Rasmussen, D. T., and Simons, E. L. 1988. New Oligocene hyracoids from Egypt. Journal of Vertebrate Paleontology, 8:6783.Google Scholar
Rasmussen, D. T., and Simons, E. L. 1991. The oldest Egyptian hyracoids (Mammalia: Plihyracidae): new species of Saghatherium and Thyrohyrax from the Fayum. Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen, 182:187209.Google Scholar
Sudre, J. 1979. Nouveaux mammiferes éocénes du Sahara occidental. Palaeovertebrata, 9:83115.Google Scholar