Hostname: page-component-6587cd75c8-67gbf Total loading time: 0 Render date: 2025-04-24T03:01:48.899Z Has data issue: false hasContentIssue false

The rangeomorph fossil Charnia from the Ediacaran Shibantan biota in the Yangtze Gorges area, South China

Published online by Cambridge University Press:  06 December 2022

Chengxi Wu
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China , , , , , , University of Chinese Academy of Sciences, Beijing 100049, China
Ke Pang*
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China , , , , , , University of Chinese Academy of Sciences, Beijing 100049, China
Zhe Chen*
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China , , , , , , University of Chinese Academy of Sciences, Beijing 100049, China
Xiaopeng Wang
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China , , , , , , University of Chinese Academy of Sciences, Beijing 100049, China
Chuanming Zhou
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China , , , , , , University of Chinese Academy of Sciences, Beijing 100049, China
Bin Wan
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China , , , , , , University of Chinese Academy of Sciences, Beijing 100049, China
Xunlai Yuan
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China , , , , , , University of Chinese Academy of Sciences, Beijing 100049, China
Shuhai Xiao
Affiliation:
Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
*
*Corresponding author
*Corresponding author

Abstract

The terminal Ediacaran Shibantan biota (~550–543 Ma) from the Dengying Formation in the Yangtze Gorges area of South China represents one of the rare examples of carbonate-hosted Ediacara-type macrofossil assemblages. In addition to the numerically dominant taxa—the non-biomineralizing tubular fossil Wutubus and discoidal fossils Aspidella and Hiemalora, the Shibantan biota also bears a moderate diversity of frondose fossils, including Pteridinium, Rangea, Arborea, and Charnia. In this paper, we report two species of the rangeomorph genus Charnia, including the type species Charnia masoni Ford, 1958 emend. and Charnia gracilis new species, from the Shibantan biota. Most of the Shibantan Charnia specimens preserve only the petalodium, with a few bearing the holdfast and stem. Despite overall architectural similarities to other Charnia species, the Shibantan specimens of Charnia gracilis n. sp. are distinct in their relatively straight, slender, and more acutely angled first-order branches. They also show evidence that may support a two-stage growth model and a epibenthic sessile lifestyle. Charnia fossils described herein represent one of the youngest occurrences of this genus and extend its paleogeographic and stratigraphic distributions. Our discovery also highlights the notable diversity of the Shibantan biota, which contains examples of a wide range of Ediacaran morphogroups.

UUID: http://zoobank.org/837216cd-4a4a-4e13-89e2-ee354ba48a4c

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

An, Z., Jiang, G., Tong, J., Tian, L., Ye, Q., Song, H., and Song, H., 2015, Stratigraphic position of the Ediacaran Miaohe biota and its constraints on the age of the upper Doushantuo δ13C anomaly in the Yangtze Gorges area, South China: Precambrian Research, v. 271, p. 243253.10.1016/j.precamres.2015.10.007CrossRefGoogle Scholar
Antcliffe, J.B., and Brasier, M.D., 2007, Charnia and sea pens are poles apart: Journal of the Geological Society, v. 164, p. 4951.10.1144/0016-76492006-080CrossRefGoogle Scholar
Antcliffe, J.B., and Brasier, M.D., 2008, Charnia at 50: developmental models for Ediacaran fronds: Palaeontology, v. 51, p. 1126.10.1111/j.1475-4983.2007.00738.xCrossRefGoogle Scholar
Antcliffe, J.B., Liu, A.G., Menon, L.R., McIlroy, D., McLoughlin, N., and Wacey, D., 2017, Understanding ancient life: how Martin Brasier changed the way we think about the fossil record: Geological Society, London, Special Publications, v. 448, p. 1931.10.1144/SP448.16CrossRefGoogle Scholar
Bamforth, E.L., and Narbonne, G.M., 2009, New Ediacaran rangeomorphs from Mistaken Point, Newfoundland, Canada: Journal of Paleontology, v. 83, p. 897913.10.1666/09-047.1CrossRefGoogle Scholar
Boag, T.H., Darroch, S.A.F., and Laflamme, M., 2016, Ediacaran distributions in space and time: testing assemblage concepts of earliest macroscopic body fossils: Paleobiology, v. 42, p. 574594.10.1017/pab.2016.20CrossRefGoogle Scholar
Bobrovskiy, I., Hope, J.M., Ivantsov, A., Nettersheim, B.J., Hallmann, C., and Brocks, J.J., 2018, Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals: Science, v. 361, p. 12461249.10.1126/science.aat7228CrossRefGoogle ScholarPubMed
Boddy, C.E., Mitchell, E.G., Merdith, A., and Liu, A.G., 2022, Palaeolatitudinal distribution of the Ediacaran macrobiota: Journal of the Geological Society (London), v. 179, n. jgs2021-030, https://doi.org/10.1144/jgs2021-030CrossRefGoogle Scholar
Boynton, H.E., and Ford, T.D., 1995, Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England: Mercian Geologist, v. 13, p. 165182.Google Scholar
Brasier, M.D., Antcliffe, J.B., and Liu, A.G., 2012, The architecture of Ediacaran fronds: Palaeontology, v. 55, p. 11051124.10.1111/j.1475-4983.2012.01164.xCrossRefGoogle Scholar
Budd, G.E., and Jensen, S., 2017, The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution: Biological Reviews, v. 92, p. 446473.10.1111/brv.12239CrossRefGoogle Scholar
Burzynski, G., and Narbonne, G.M., 2015, The discs of Avalon: relating discoid fossils to frondose organisms in the Ediacaran of Newfoundland, Canada: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 434, p. 3445.10.1016/j.palaeo.2015.01.014CrossRefGoogle Scholar
Butterfield, N., 2022, Constructional and functional anatomy of Ediacaran rangeomorphs: Geological Magazine, v. 159, p. 11481159.10.1017/S0016756820000734CrossRefGoogle Scholar
Callow, R.H.T., and Brasier, M.D., 2009, Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: implications for Ediacaran taphonomic models: Earth-Science Reviews, v. 96, p. 207219.10.1016/j.earscirev.2009.07.002CrossRefGoogle Scholar
Chen, X., Zhou, P., Zhang, B., Wei, K., and Zhang, M., 2016, Lithostratigraphy, biostratigraphy, sequence stratigraphy and carbon isotope chemostratigraphy of the upper Ediacaran in Yangtze Gorges and their significance for chronostratigraphy: Geology and Mineral Resources of South China, v. 32, p. 87105.Google Scholar
Chen, Z., Zhou, C., Meyer, M., Xiang, K., Schiffbauer, J.D., Yuan, X., and Xiao, S., 2013, Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors: Precambrian Research, v. 224, p. 690701.10.1016/j.precamres.2012.11.004CrossRefGoogle Scholar
Chen, Z., Zhou, C., Xiao, S., Wang, W., Guan, C., Hua, H., and Yuan, X., 2014, New Ediacara fossils preserved in marine limestone and their ecological implications: Scientific Reports, v. 4, n. 4180, https://doi.org/10.1038/srep04180Google ScholarPubMed
Chen, Z., Zhou, C., Yuan, X., and Xiao, S., 2019, Death march of a segmented and trilobate bilaterian elucidates early animal evolution: Nature, v. 573, p. 412415.10.1038/s41586-019-1522-7CrossRefGoogle ScholarPubMed
Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., and Jin, Y., 2005, U–Pb ages from the Neoproterozoic Doushantuo Formation, China: Science, v. 308, p. 9598.10.1126/science.1107765CrossRefGoogle ScholarPubMed
Darroch, S.A.F., Laflamme, M., and Clapham, M.E., 2013, Population structure of the oldest known macroscopic communities from Mistaken Point, Newfoundland: Paleobiology, v. 39, p. 591608.10.1666/12051CrossRefGoogle Scholar
Darroch, S.A.F. et al., 2015, Biotic replacement and mass extinction of the Ediacara biota: Proceedings of the Royal Society of London B: Biological Sciences, v. 282, n. 20151003, https://doi.org/10.1098/rspb.2015.1003Google ScholarPubMed
Darroch, S.A.F., Smith, E.F., Laflamme, M., and Erwin, D.H., 2018, Ediacaran extinction and Cambrian Explosion: Trends in Ecology & Evolution, v. 33, p. 653663.10.1016/j.tree.2018.06.003CrossRefGoogle ScholarPubMed
Dececchi, T.A., Narbonne, G.M., Greentree, C., and Laflamme, M., 2017, Relating Ediacaran fronds: Paleobiology, v. 43, p. 171180.10.1017/pab.2016.54CrossRefGoogle Scholar
Dececchi, T.A., Narbonne, G.M., Greentree, C., and Laflamme, M., 2018, Phylogenetic relationships among the Rangeomorpha: the importance of outgroup selection and implications for their diversification: Canadian Journal of Earth Sciences, v. 55, p. 12231239.10.1139/cjes-2018-0022CrossRefGoogle Scholar
Ding, W., Dong, L., Sun, Y., Ma, H., Xu, Y., Yang, R., Peng, Y., Zhou, C., and Shen, B., 2019, Early animal evolution and highly oxygenated seafloor niches hosted by microbial mats: Scientific Reports, v. 9, n. 13628, https://doi.org/10.1038/s41598-019-49993-2CrossRefGoogle ScholarPubMed
Ding, Y., Chen, D., Zhou, X., Guo, C., Huang, T., and Zhang, G., 2019, Cavity-filling dolomite speleothems and submarine cements in the Ediacaran Dengying microbialites, South China: responses to high-frequency sea-level fluctuations in an ‘aragonite–dolomite sea’: Sedimentology, v. 66, p. 25112537.10.1111/sed.12605CrossRefGoogle Scholar
Droser, M.L., Tarhan, L.G., and Gehling, J.G., 2017, The rise of animals in a changing environment: global ecological innovation in the late Ediacaran: Annual Review of Earth and Planetary Sciences, v. 45, p. 593617.10.1146/annurev-earth-063016-015645CrossRefGoogle Scholar
Duda, J.-P., Zhu, M., and Reitner, J., 2016, Depositional dynamics of a bituminous carbonate facies in a tectonically induced intra-platform basin: the Shibantan Member (Dengying Formation, Ediacaran Period): Carbonates and Evaporites, v. 31, p. 8799.10.1007/s13146-015-0243-8CrossRefGoogle Scholar
Dufour, S.C., and McIlroy, D., 2016, Ediacaran pre-placozoan diploblasts in the Avalonian biota: the role of chemosynthesis in the evolution of early animal life: Geological Society, London, Special Publications, v. 448, p. 211219.10.1144/SP448.5CrossRefGoogle Scholar
Dunn, F.S., Liu, A.G., and Donoghue, P.C.J., 2018, Ediacaran developmental biology: Biological Reviews, v. 93, p. 914932.10.1111/brv.12379CrossRefGoogle ScholarPubMed
Dunn, F.S., Wilby, P.R., Kenchington, C.G., Grazhdankin, D.V., Donoghue, P.C., and Liu, A.G., 2019, Anatomy of the Ediacaran rangeomorph Charnia masoni: Papers in Palaeontology, v. 5, p. 157176.10.1002/spp2.1234CrossRefGoogle ScholarPubMed
Dunn, F.S., Liu, A.G., Grazhdankin, D.V., Vixseboxse, P., Flannery-Sutherland, J., Green, E., Harris, S., Wilby, P.R., and Donoghue, P.C.J., 2021, The developmental biology of Charnia and the eumetazoan affinity of the Ediacaran rangeomorphs: Science Advances, v. 7, n. eabe0291, https://doi.org/10.1126/sciadv.abe0291CrossRefGoogle ScholarPubMed
Fedonkin, M.A., 1978, New locality of nonskeletal Metazoa in Vendian of Winter Shore: Doklady Akademii Nauk SSSR, v. 239, p. 14231426.Google Scholar
Fedonkin, M.A., 1981a, White Sea biota of the Vendian: Trudy Geologicheskiy Institut, v. 342, p. 1100.Google Scholar
Fedonkin, M.A., 1981b, A major locality of Precambrian: Priroda, v. 5, p. 94102.Google Scholar
Fedonkin, M.A., 1983a, Ecology of Precambrian Metazoa of the White Sea biota, in Problems of Ecology of Fauna and Flora in Ancient Basins: Proceedings of the Paleontological Institute of the Academy of Sciences of the USSR, v. 194: Moscow, Nauka, p. 25–33.Google Scholar
Fedonkin, M.A., 1983b, Organic world of the Vendian: Itogi Nauki i Tekhniki, seriya Stratigrafiya, Paleontologiya, v. 12, p. 1127.Google Scholar
Fedonkin, M.A., 1985, Systematic description of Vendian Metazoa, in Sokolov, B.S., and Iwanowski, A.B., eds., The Vendian System. Volume 1. Paleontology: Moscow, Nauka, p. 70112.Google Scholar
Fedonkin, M.A., 1987, Non-skeletal fauna of the Vendian and its place in the evolution of metazoans: Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, v. 226, p. 1173.Google Scholar
Fedonkin, M.A., 1990, Systematic description of Vendian Metazoa, in Sokolov, B S., and Iwanowski, A.B., eds., The Vendian System. Volume 1. Paleontology: Heidelberg, Springer-Verlag, p. 71120.Google Scholar
Fedonkin, M.A., 1992, Vendian faunas and the early evolution of Metazoa, in Lipps, J., and Signor, P., eds., Origin and Early Evolution of the Metazoa, v. 10: Boston, Springer, p. 87129.10.1007/978-1-4899-2427-8_4CrossRefGoogle Scholar
Fedonkin, M.A., 1994, Vendian body fossils and trace fossils, in Bengtson, S., ed., Early Life on Earth: New York, Columbia University Press, p. 370388.Google Scholar
Fedonkin, M.A., and Waggoner, B.M., 1997, The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism: Nature, v. 388, p. 868871.10.1038/42242CrossRefGoogle Scholar
Fedonkin, M.A., Gehling, J.G., Grey, K., Narbonne, G.M., and Vickers-Rich, P., 2007, The Rise of Animals: Evolution and Diversification of the Kingdom Animalia: Baltimore, Johns Hopkins University Press, 326 p.Google Scholar
Ford, T.D., 1958, Pre-Cambrian fossils from Charnwood Forest: Proceedings of the Yorkshire Geological Society, v. 31, p. 211217.10.1144/pygs.31.3.211CrossRefGoogle Scholar
Ford, T.D., 1962, The oldest fossils: New Scientist, v. 15, p. 191194.Google Scholar
Ford, T.D., 1999, The Precambrian fossils of Charnwood Forest: Geology Today, v. 15, p. 230234.10.1046/j.1365-2451.1999.00007.xCrossRefGoogle Scholar
Gehling, J.G., 1991, The case for Ediacaran fossil roots to the metazoan tree: Geological Society of India Memoir, v. 20, p. 181224.Google Scholar
Gehling, J.G., 1999, Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks: Palaios, v. 14, p. 4057.10.2307/3515360CrossRefGoogle Scholar
Gehling, J.G., and Droser, M.L., 2013, How well do fossil assemblages of the Ediacara Biota tell time?: Geology, v. 41, p. 447450.10.1130/G33881.1CrossRefGoogle Scholar
Gehling, J.G., and Droser, M.L., 2018, Ediacaran scavenging as a prelude to predation: Emerging Topics in Life Sciences, v. 2, p. 213222.Google ScholarPubMed
Germs, G.J.B., 1973, A reinterpretation of Rangea schneiderhoehni and the discovery of a related new fossil from the Nama Group, South West Africa: Lethaia, v. 6, p. 19.10.1111/j.1502-3931.1973.tb00870.xCrossRefGoogle Scholar
Ghisalberti, M., Gold, D.A., Laflamme, M., Clapham, M.E., Narbonne, G.M., Summons, R.E., Johnston, D.T., and Jacobs, D.K., 2014, Canopy flow analysis reveals the advantage of size in the oldest communities of multicellular eukaryotes: Current Biology, v. 24, p. 305309.10.1016/j.cub.2013.12.017CrossRefGoogle ScholarPubMed
Glaessner, M.F., 1959, Precambrian Coelenterata from Australia, Africa and England: Nature, v. 183, p. 14721473.10.1038/1831472b0CrossRefGoogle Scholar
Glaessner, M.F., 1961, Pre-Cambrian animals: Scientific American, v. 204, p. 7278.10.1038/scientificamerican0361-72CrossRefGoogle Scholar
Glaessner, M.F., 1962, Pre-Cambrian fossils: Biological Reviews, v. 37, p. 467493.Google Scholar
Glaessner, M.F., 1979, Precambrian, in Moore, R.C., Robinson, R.A., and Teichert, C., eds., Treatise on Invertebrate Paleontology, Part A, Fossilization (Taphonomy), Biogeography and Biostratigraphy, Introduction: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. 79118.Google Scholar
Glaessner, M.F., 1984, The Dawn of Animal Life: A Biohistorical Study: Cambridge, Cambridge University Press, 244 p.Google Scholar
Glaessner, M.F., and Daily, B., 1959, The geology and late Precambrian fauna of the Ediacara fossil reserve: Records of the South Australian Museum, v. 13, p. 369401.Google Scholar
Glaessner, M.F., and Wade, M., 1966, The late Precambrian fossils from Ediacara, South Australia: Palaeontology, v. 9, p. 599628.Google Scholar
Glaessner, M.F., and Walter, M.R., 1981, Australian Precambrian palaeobiology: Developments in Precambrian Geology, v. 2, p. 361396.10.1016/S0166-2635(08)70200-7CrossRefGoogle Scholar
Grazhdankin, D.V., 2004, Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution: Paleobiology, v. 30, p. 203221.10.1666/0094-8373(2004)030<0203:PODITE>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Grazhdankin, D., 2011, Ediacaran Biota, in Reitner, J., and Thiel, V., eds., Encyclopedia of Geobiology: Dordrecht, Springer, p. 342348.10.1007/978-1-4020-9212-1_79CrossRefGoogle Scholar
Grazhdankin, D., 2014, Patterns of evolution of the Ediacaran soft-bodied biota: Journal of Paleontology, v. 88, p. 269283.10.1666/13-072CrossRefGoogle Scholar
Grazhdankin, D., and Bronnikov, A., 1997, A new locality of the remains of the late Vendian soft-bodied organisms on the Onega Peninsula: Transactions (Doklady) of the Russian Academy of Sciences/Earth Science Sections, v. 357A, p. 13111315.Google Scholar
Grazhdankin, D., Maslov, A., Mustill, T., and Krupenin, M., 2005, The Ediacaran White Sea biota in the Central Urals: Doklady Earth Sciences, v. 401, p. 382385.Google Scholar
Grazhdankin, D.V., Balthasar, U., Nagovitsin, K.E., and Kochnev, B.B., 2008, Carbonate-hosted Avalon-type fossils in arctic Siberia: Geology, v. 36, p. 803806.10.1130/G24946A.1CrossRefGoogle Scholar
Hofmann, H.J., O'Brien, S.J., and King, A.F., 2008, Ediacaran biota on Bonavista Peninsula, Newfoundland, Canada: Journal of Paleontology, v. 82, p. 136.10.1666/06-087.1CrossRefGoogle Scholar
Hoyal Cuthill, J.F., and Han, J., 2018, Cambrian petalonamid Stromatoveris phylogenetically links Ediacaran biota to later animals: Palaeontology, v. 61, p. 813823.10.1111/pala.12393CrossRefGoogle Scholar
Huang, T., Chen, D., Ding, Y., Zhou, X., and Zhang, G., 2020, SIMS U–Pb zircon geochronological and carbon isotope chemostratigraphic constraints on the Ediacaran–Cambrian boundary succession in the Three Gorges Area, South China: Journal of Earth Science, v. 31, p. 6978.10.1007/s12583-019-1233-xCrossRefGoogle Scholar
Jenkins, R.J.F., 1985, The enigmatic Ediacaran (late Precambrian) genus Rangea and related forms: Paleobiology, v. 11, p. 336355.10.1017/S0094837300011635CrossRefGoogle Scholar
Jenkins, R.J.F., 1996, Aspects of the geological setting and palaeobiology of the Ediacara assemblage, in Davies, M., Twidale, C.R., and Tyler, M.J., eds., Natural History of the Flinders Ranges, v. 7: Richmond, South Australia, Royal Society of South Australia, p. 3345.Google Scholar
Kenchington, C.G., Harris, S.J., Vixseboxse, P.B., Pickup, C., and Wilby, P.R., 2018, The Ediacaran fossils of Charnwood Forest: shining new light on a major biological revolution: Proceedings of the Geologists’ Association, v. 129, p. 264277.10.1016/j.pgeola.2018.02.006CrossRefGoogle Scholar
Laflamme, M., and Narbonne, G.M., 2008, Ediacaran fronds: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 258, p. 162179.10.1016/j.palaeo.2007.05.020CrossRefGoogle Scholar
Laflamme, M., Narbonne, G.M., Greentree, C., and Anderson, M.M., 2007, Morphology and taphonomy of an Ediacaran frond: Charnia from the Avalon Peninsula of Newfoundland, in Vickers-Rich, P., and Komarower, P., eds., The Rise and Fall of the Ediacaran Biota: London, Geological Society, p. 237257.Google Scholar
Laflamme, M., Xiao, S., and Kowalewski, M., 2009, Osmotrophy in modular Ediacara organisms: Proceedings of the National Academy of Sciences, v. 106, p. 1443814443.10.1073/pnas.0904836106CrossRefGoogle ScholarPubMed
Laflamme, M., Schiffbauer, J.D., Narbonne, G.M., and Briggs, D.E.G., 2011, Microbial biofilms and the preservation of the Ediacara biota: Lethaia, v. 44, p. 203213.10.1111/j.1502-3931.2010.00235.xCrossRefGoogle Scholar
Laflamme, M., Darroch, S.A.F., Tweedt, S.M., Peterson, K.J., and Erwin, D.H., 2013, The end of the Ediacara biota: extinction, biotic replacement, or Cheshire Cat?: Gondwana Research, v. 23, p. 558573.10.1016/j.gr.2012.11.004CrossRefGoogle Scholar
Laflamme, M., Gehling, J.G., and Droser, M.L., 2018, Deconstructing an Ediacaran frond: three-dimensional preservation of Arborea from Ediacara, South Australia: Journal of Paleontology, v. 92, p. 323335.10.1017/jpa.2017.128CrossRefGoogle Scholar
Liang, D., Cai, Y., Nolan, M., and Xiao, S., 2020, The terminal Ediacaran tubular fossil Cloudina in the Yangtze Gorges area of South China: Precambrian Research, v. 351, n. 105931, https://doi.org/10.1016/j.precamres.2020.105931CrossRefGoogle Scholar
Linnemann, U. et al., 2019, New high-resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion: Terra Nova, v. 31, p. 4958.10.1111/ter.12368CrossRefGoogle Scholar
Liu, A.G., and Dunn, F.S., 2020, Filamentous connections between Ediacaran fronds: Current Biology, v. 30, p. 13221328.10.1016/j.cub.2020.01.052CrossRefGoogle ScholarPubMed
Liu, A.G., McIlroy, D., Matthews, J.J., and Brasier, M.D., 2012, A new assemblage of juvenile Ediacaran fronds from the Drook Formation, Newfoundland: Journal of the Geological Society, v. 169, p. 395403.10.1144/0016-76492011-094CrossRefGoogle Scholar
Liu, A.G., McIlroy, D., Matthews, J.J., and Brasier, M.D., 2013, Exploring an Ediacaran ‘nursery’: growth, ecology and evolution in a rangeomorph palaeocommunity: Geology Today, v. 29, p. 2326.10.1111/j.1365-2451.2013.00860.xCrossRefGoogle Scholar
Liu, A.G., Kenchington, C.G., and Mitchell, E.G., 2015, Remarkable insights into the paleoecology of the Avalonian Ediacaran macrobiota: Gondwana Research, v. 27, p. 13551380.10.1016/j.gr.2014.11.002CrossRefGoogle Scholar
Liu, A.G., Matthews, J.J., and McIlroy, D., 2016, The Beothukis/Culmofrons problem and its bearing on Ediacaran macrofossil taxonomy: evidence from an exceptional new fossil locality: Palaeontology, v. 59, p. 4558.10.1111/pala.12206CrossRefGoogle Scholar
Luzhnaya, E., and Ivantsov, A.Y., 2019, Skeletal nets of the Ediacaran fronds: Paleontological Journal, v. 53, p. 667675.10.1134/S0031030119070050CrossRefGoogle Scholar
Martin, M.W., Grazhdankin, D.V., Bowring, S.A., Evans, D.A.D., Fedonkin, M.A., and Kirschvink, J.L., 2000, Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution: Science, v. 288, p. 841845.Google ScholarPubMed
Matthews, J.J., Liu, A.G., Yang, C., McIlroy, D., Levell, B., and Condon, D.J., 2021, A chronostratigraphic framework for the rise of the Ediacaran macrobiota: new constraints from Mistaken Point Ecological Reserve, Newfoundland: GSA Bulletin, v. 133, p. 612624.10.1130/B35646.1CrossRefGoogle Scholar
McIlroy, D., Dufour, S.C., Taylor, R., and Nicholls, R., 2021, The role of symbiosis in the first colonization of the seafloor by macrobiota: insights from the oldest Ediacaran biota (Newfoundland, Canada): BioSystems, v. 205, n. 104413, https://doi.org/10.1016/j.biosystems.2021.104413CrossRefGoogle ScholarPubMed
McIlroy, D., Hawco, J., McKean, C., Nicholls, R., Pasinetti, G., and Taylor, R., 2022, Palaeobiology of the reclining rangeomorph Beothukis from the Ediacaran Mistaken Point Formation of southeastern Newfoundland: Geological Magazine, v. 159, p. 11601174.10.1017/S0016756820000941CrossRefGoogle Scholar
McMahon, W.J., Liu, A.G., Tindal, B.H., and Kleinhans, M.G., 2020, Ediacaran life close to land: coastal and shoreface habitats of the Ediacaran macrobiota, the Central Flinders Ranges, South Australia: Journal of Sedimentary Research, v. 90, p. 14631499.10.2110/jsr.2020.029CrossRefGoogle Scholar
Meyer, M., Xiao, S., Gill, B.C., Schiffbauer, J.D., Chen, Z., Zhou, C., and Yuan, X., 2014, Interactions between Ediacaran animals and microbial mats: insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 396, p. 6274.10.1016/j.palaeo.2013.12.026CrossRefGoogle Scholar
Mitchell, E.G., and Kenchington, C.G., 2018, The utility of height for the Ediacaran organisms of Mistaken Point: Nature Ecology & Evolution, v. 2, p. 12181222.10.1038/s41559-018-0591-6CrossRefGoogle ScholarPubMed
Mitchell, E.G., Kenchington, C.G., Liu, A.G., Matthews, J.J., and Butterfield, N.J., 2015, Reconstructing the reproductive mode of an Ediacaran macro-organism: Nature, v. 524, p. 343346.10.1038/nature14646CrossRefGoogle ScholarPubMed
Moynihan, D.P., Strauss, J.V., Nelson, L.L., and Padget, C.D., 2019, Upper Windermere Supergroup and the transition from rifting to continent-margin sedimentation, Nadaleen River area, northern Canadian Cordillera: GSA Bulletin, v. 131, p. 16731701.10.1130/B32039.1CrossRefGoogle Scholar
Muscente, A.D. et al., 2019, Ediacaran biozones identified with network analysis provide evidence for pulsed extinctions of early complex life: Nature Communications, v. 10, n. 911, https://doi.org/10.1038/s41467-019-08837-3CrossRefGoogle ScholarPubMed
Narbonne, G.M., 2004, Modular construction of early Ediacaran complex life forms: Science, v. 305, p. 11411144.10.1126/science.1099727CrossRefGoogle ScholarPubMed
Narbonne, G.M., and Gehling, J.G., 2003, Life after snowball: the oldest complex Ediacaran fossils: Geology, v. 31, p. 2730.10.1130/0091-7613(2003)031<0027:LASTOC>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Narbonne, G., Dalrymple, R., Laflamme, M., Gehling, J., and Boyce, W., 2005, Life after snowball: Mistaken Point Biota and the Cambrian of the Avalon. North American Paleontological Convention Field Trip Guidebook: Halifax, North American Paleontology Convention, 100 p.Google Scholar
Narbonne, G.M., Laflamme, M., Greentree, C., and Trusler, P., 2009, Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland: Journal of Paleontology, v. 83, p. 503523.10.1666/08-072R1.1CrossRefGoogle Scholar
Narbonne, G.M., Laflamme, M., Trusler, P.W., Dalrymple, R.W., and Greentree, C., 2014, Deep-water Ediacaran fossils from northwestern Canada: taphonomy, ecology, and evolution: Journal of Paleontology, v. 88, p. 207223.10.1666/13-053CrossRefGoogle Scholar
Nedin, C., and Jenkins, R.J.F., 1998, First occurrence of the Ediacaran fossil Charnia from the Southern Hemisphere: Alcheringa, v. 22, p. 315316.10.1080/03115519808619329CrossRefGoogle Scholar
Noble, S.R., Condon, D.J., Carney, J.N., Wilby, P.R., Pharaoh, T.C., and Ford, T.D., 2015, U–Pb geochronology and global context of the Charnian Supergroup, UK: constraints on the age of key Ediacaran fossil assemblages: GSA Bulletin, v. 127, p. 250265.10.1130/B31013.1CrossRefGoogle Scholar
Okada, Y., Sawaki, Y., Komiya, T., Hirata, T., Takahata, N., Sano, Y., Han, J., and Maruyama, S., 2014, New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges, Weng'an and Chengjiang areas, South China: Gondwana Research, v. 25, p. 10271044.10.1016/j.gr.2013.05.001CrossRefGoogle Scholar
Pang, K., Wu, C., Sun, Y., Ouyang, Q., Yuan, X., Shen, B., Lang, X., Wang, R., Chen, Z., and Zhou, C., 2021, New Ediacara-type fossils and late Ediacaran stratigraphy from the northern Qaidam Basin (China): paleogeographic implications: Geology, v. 49, p. 11601164.10.1130/G48842.1CrossRefGoogle Scholar
Peterson, K.J., Waggoner, B., and Hagadorn, J.W., 2003, A fungal analog for Newfoundland Ediacaran fossils?: Integrative and Comparative Biology, v. 43, p. 127136.10.1093/icb/43.1.127CrossRefGoogle ScholarPubMed
Pflug, H.D., 1970, Zur Fauna der Nama-Schichten in Südwest-Afrika. II. Rangeidae, Bau und Systematische Zugehörigkeit: Palaeontographica Abteilung A, v. 135, p. 198231.Google Scholar
Pflug, H.D., 1972, Zur Fauna der Nama-Schichten in Südwest-Afrika. III. Erniettomorpha, Bau and Systematik: Palaeontographica Abteilung A, v. 139, p. 134170.Google Scholar
Preiss, W.V., 1987, The Adelaide Geosyncline: Late Proterozoic Stratigraphy, Sedimentation, Palaeontology and Tectonics: Bulletin of the Geological Survey of South Australia, v. 53, 438 p.Google Scholar
Retallack, G.J., 1994, Were the Ediacaran fossils lichens?: Paleobiology, v. 20, p. 523544.10.1017/S0094837300012975CrossRefGoogle Scholar
Rogov, V.I., Karlova, G.A., Marusin, V.V., Kochnev, B.B., Nagovitsin, K.E., and Grazhdankin, D.V., 2015, Duration of the first biozone in the Siberian hypostratotype of the Vendian: Russian Geology and Geophysics, v. 56, p. 573583.10.1016/j.rgg.2015.03.016CrossRefGoogle Scholar
Runnegar, B.N., 2022, Following the logic behind biological interpretations of the Ediacaran biotas: Geological Magazine, v. 159, p. 10931117.10.1017/S0016756821000443CrossRefGoogle Scholar
Runnegar, B.N., and Fedonkin, M.A., 1992, Proterozoic metazoan body fossils, in Schopf, J.W., and Klein, C., eds., The Proterozoic Biosphere: A Multidisciplinary Study: Cambridge, Cambridge University Press, p. 369388.Google Scholar
Seilacher, A., 1989, Vendozoa: organismic construction in the Proterozoic biosphere: Lethaia, v. 22, p. 229239.10.1111/j.1502-3931.1989.tb01332.xCrossRefGoogle Scholar
Seilacher, A., 1992, Vendobionta and Psammocorallia: lost constructions of Precambrian evolution: Journal of the Geological Society, v. 149, p. 607613.10.1144/gsjgs.149.4.0607CrossRefGoogle Scholar
Shao, Y., Chen, Z., Zhou, C., and Yuan, X., 2019, Hiemalora stellaris from the Ediacaran Dengying Formation in the Yangtze Gorges area, Hubei Province: affinity and taphonomic analysis: Acta Palaeontologica Sinica, v. 58, p. 110.Google Scholar
Sokolov, B.S., 1972a, Precambrian biosphere in light of paleontological data: Vestnik Akademii Nauk SSSR, v. 8, p. 4854.Google Scholar
Sokolov, B.S., 1972b, The Vendian stage in Earth history, in Sokolov, B.S., ed., Proceedings of the 24th Session of the International Geological Congress: Reports of Soviet Geologists: Moscow, Nauka, p. 114124.Google Scholar
Sokolov, B.S., 1973, Vendian of Northern Eurasia, in Pitcher, M. G., ed., Arctic Geology: American Association of Petroleum Geologists, Memoir 19, p. 204–218.Google Scholar
Sokolov, B.S., 1976, Organic world of the Earth on its way to Phanerozoic differentiation: Vestnik Akademii Nauk SSSR, v. 1, p. 126143.Google Scholar
Sokolov, B.S., 1977, Organic world of the Earth on its way to Phanerozoic differentiation, in The 250th Anniversary of the Academy of Sciences of the USSR. Documents and Records of the Celebrations: Moscow, Nauka, p. 423–444.Google Scholar
Sokolov, B.S., 1984, Vendian period in the Earth's history: Priroda, v. 12, p. 318.Google Scholar
Sokolov, B.S., and Brekhovskikh, L.M., 1981, The progress of Earth sciences: Zemlya i Vselennaya, v. 1, p. 27.Google Scholar
Sokolov, B.S., and Fedonkin, M.A., 1983, Another 100 million years: Nauka v SSSR, v. 5, p. 1019.Google Scholar
Sokolov, B.S., and Fedonkin, M.A., 1984, The Vendian as the terminal system of the Precambrian: Episodes Journal of International Geoscience, v. 7, p. 1219.Google Scholar
Sperling, E.A., and Vinther, J., 2010, A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes: Evolution & Development, v. 12, p. 201209.10.1111/j.1525-142X.2010.00404.xCrossRefGoogle ScholarPubMed
Tarhan, L.G., Droser, M.L., and Gehling, J.G., 2010, Taphonomic controls on Ediacaran diversity: uncovering the holdfast origin of morphologically variable enigmatic structures: Palaios, v. 25, p. 823830.10.2110/palo.2010.p10-074rCrossRefGoogle Scholar
Vickers-Rich, P. et al., 2013, Reconstructing Rangea: new discoveries from the Ediacaran of Southern Namibia: Journal of Paleontology, v. 87, p. 115.10.1666/12-074R.1CrossRefGoogle Scholar
Waggoner, B., 2003, The Ediacaran biotas in space and time: Integrative and Comparative Biology, v. 43, p. 104113.10.1093/icb/43.1.104CrossRefGoogle ScholarPubMed
Wang, X., Pang, K., Chen, Z., Wan, B., Xiao, S., Zhou, C., and Yuan, X., 2020, The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China: Journal of Paleontology, v. 94, p. 10341050.10.1017/jpa.2020.43CrossRefGoogle Scholar
Wang, X., Chen, Z., Pang, K., Zhou, C., Xiao, S., Wan, B., and Yuan, X., 2021, Dickinsonia from the Ediacaran Dengying Formation in the Yangtze Gorges area, South China: Palaeoworld, v. 30, p. 602609.10.1016/j.palwor.2021.01.002CrossRefGoogle Scholar
Wilby, P.R., Carney, J.N., and Howe, M.P.A., 2011, A rich Ediacaran assemblage from eastern Avalonia: evidence of early widespread diversity in the deep ocean: Geology, v. 39, p. 655658.10.1130/G31890.1CrossRefGoogle Scholar
Wilby, P.R., Kenchington, C.G., and Wilby, R.L., 2015, Role of low intensity environmental disturbance in structuring the earliest (Ediacaran) macrobenthic tiered communities: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 434, p. 1427.10.1016/j.palaeo.2015.03.033CrossRefGoogle Scholar
Wu, C., Chen, Z., Pang, K., Wang, X., Wan, B., Zhou, C., and Yuan, X., 2021, The Ediacaran Shibantan biota in the Yangtze Gorges area: perspectives from quantitative paleontology and ecospace occupancy: Acta Palaeontologica Sinica, v. 60, p. 4268.Google Scholar
Xiao, Q., She, Z., Wang, G., Li, Y., Ouyang, G., Cao, K., Mason, R., and Du, Y., 2020, Terminal Ediacaran carbonate tempestites in the eastern Yangtze Gorges area, South China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 547, n. 109681, https://doi.org/10.1016/j.palaeo.2020.109681CrossRefGoogle Scholar
Xiao, S., and Laflamme, M., 2009, On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota: Trends in Ecology & Evolution, v. 24, p. 3140.10.1016/j.tree.2008.07.015CrossRefGoogle ScholarPubMed
Xiao, S., Bykova, N., Kovalick, A., and Gill, B.C., 2017, Stable carbon isotopes of sedimentary kerogens and carbonaceous macrofossils from the Ediacaran Miaohe Member in South China: implications for stratigraphic correlation and sources of sedimentary organic carbon: Precambrian Research, v. 302, p. 171179.10.1016/j.precamres.2017.10.006CrossRefGoogle Scholar
Xiao, S., Chen, Z., Zhou, C., and Yuan, X., 2019, Surfing in and on microbial mats: oxygen-related behavior of a terminal Ediacaran bilaterian animal: Geology, v. 47, p. 10541058.10.1130/G46474.1CrossRefGoogle Scholar
Xiao, S., Chen, Z., Pang, K., Zhou, C., and Yuan, X., 2020, The Shibantan Lagerstätte: insights into the Proterozoic–Phanerozoic transition: Journal of the Geological Society, v. 178, n. jgs2020–135, https://doi.org/10.1144/jgs2020-135Google Scholar
Yang, C., Rooney, A.D., Condon, D.J., Li, X., Grazhdankin, D.V., Bowyer, F.T., Hu, C., Macdonald, F.A., and Zhu, M., 2021, The tempo of Ediacaran evolution: Science Advances, v. 7, n. eabi9643, https://doi.org/10.1126/sciadv.abi9643CrossRefGoogle Scholar
Zhang, L., Chang, S., Chen, C., Wang, X., Feng, Q., Steiner, M., Yang, B., Mason, R., She, Z., and Yan, J., 2022, Cloudina aggregates from the uppermost Dengying Formation, Three Gorges area, South China, and stratigraphical implications: Precambrian Research, v. 370, n. 106552, https://doi.org/10.1016/j.precamres.2021.106552CrossRefGoogle Scholar
Zhao, G., Wang, Y., Huang, B., Dong, Y., Li, S., Zhang, G., and Yu, S., 2018, Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea: Earth-Science Reviews, v. 186, p. 262286.10.1016/j.earscirev.2018.10.003CrossRefGoogle Scholar
Zhou, C., Xiao, S., Wang, W., Guan, C., Ouyang, Q., and Chen, Z., 2017, The stratigraphic complexity of the middle Ediacaran carbon isotopic record in the Yangtze Gorges area, South China, and its implications for the age and chemostratigraphic significance of the Shuram excursion: Precambrian Research, v. 288, p. 2338.10.1016/j.precamres.2016.11.007CrossRefGoogle Scholar