Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T12:01:36.814Z Has data issue: false hasContentIssue false

Primitive pollen cone structure in Upper Pennsylvanian (Stephanian) Walchian conifers

Published online by Cambridge University Press:  14 July 2015

Gene Mapes
Affiliation:
Department of Environmental and Plant Biology, Ohio University, Athens 45701
Gar W. Rothwell
Affiliation:
Department of Environmental and Plant Biology, Ohio University, Athens 45701

Abstract

A large number of conifer pollen cones associated with primitive walchian conifers, including Emporia, occur within an exceptionally preserved fossilized biota near Hamilton, Kansas, USA. The fossils are derived from channel deposits within the Upper Pennsylvanian (Stephanian B/C) Topeka Limestone and show excellent external morphology, internal anatomy, and cuticular features. Pollen cones are cylindrical, up to 5 cm long and 1 cm wide and are simply organized. Each pollen cone consists of a nonwoody central axis from which sporophylls diverge in a helical arrangement. Vascular tissue comprises a ring of tiny cauline bundles that divide at intervals to produce a single trace to each sporophyll. Sporophylls consist of a terete stalk and a heeled distal lamina. Sporangia are attached as a cluster on the adaxial surface of the sporophyll stalk. Stomata occur in one or two bands on the inner surface of sporophyll laminae and consist of guard cells surrounded by a ring of subsidiary cells, each with one overarching papilla. The Hamilton specimens provide conclusive evidence that pollen cones with a distinctive morphology were produced by some of the most ancient walchians from both North America and Europe. Contrary to traditional interpretations, these cones differ significantly from those of the Pinaceae. The broad geographic and stratigraphic distribution of this morphology reveals that conifer pollen cones similar to those at Hamilton are more widespread than previously suspected, and provides evidence for the potentially ancestral morphology of all conifer pollen cones.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archangelsky, S., and Cuneo, R. 1987. Ferugliocladaceae, a new conifer family from the Permian of Gondwana. Review of Palaeobotany and Palynology, 51:330.CrossRefGoogle Scholar
Clement-Westerhof, J. A. 1984. Aspects of Permian palaeobotany and palynology. IV. The conifer Ortiseia Florin from the Val Gardena Formation of the Dolomites and the Vicentinian Alps (Italy) with special reference to a revised concept of the Walchiaceae (Goppert) Schimper. Review of Palaeobotany an. Palynology, 41:51166.CrossRefGoogle Scholar
Clement-Westerhof, J. A. 1987. Aspects of Permian palaeobotany and palynology. VII. The Majonicaceae, a new family of Late Permian conifers. Review of Palaeobotany and Palynology, 52:375402.CrossRefGoogle Scholar
Clement-Westerhof, J. A. 1988. Morphology and phylogeny of Paleozoic conifers, p. 298337. In Beck, C. B. (ed.), Origin and Evolution of Gymnosperms. Columbia University Press, New York.Google Scholar
Cunningham, E. R., Feldman, H. R., Franseen, E. K., Gastaldo, R. A., Mapes, G., Maples, C. G., and Schultze, H.-P. 1993. The Upper Carboniferous Hamilton fossil-lagerstätte in Kansas: a valley-fill, tidally influenced deposit. Lethaia, 26:225236.CrossRefGoogle Scholar
Feldman, H. R., Archer, A. W., Kvale, E. P., Cunningham, C. R., Maples, C. G., and West, R. R. 1993. A tidal model of Carboniferous Konservat-Lagerstätten formation. Palaios, 8:485498.CrossRefGoogle Scholar
Florin, R. 1938. Die Koniferen des Oberkarbons und des Unteren Perms. Erstes Heft, Palaeontographica Abteilung B., 85:262.Google Scholar
Florin, R. 1939a. Die Koniferen des Oberkarbons und des Unteren Perms. Zweites Heft, Palaeontographica Abteilung B., 85:64122.Google Scholar
Florin, R. 1939b. Die Koniferen des Oberkarbons und des Unteren Perms. Drittes Heft, Palaeontographica Abteilung B., 85:124173.Google Scholar
Florin, R. 1939c. Die Koniferen des Oberkarbons und des Unteren Perms. Viertes Heft, Palaeontographica Abteilung B., 85:176241.Google Scholar
Florin, R. 1940. Die Koniferen des Oberkarbons und des Unteren Perms. Funftes Heft, Palaeontographica Abteilung B., 85:244363.Google Scholar
Florin, R. 1944a. Die Koniferen des Oberkarbons und des Unteren Perms. Sextes Heft, Palaeontographica Abteilung B., 85:366456.Google Scholar
Florin, R. 1944b. Die Koniferen des Oberkarbons und des Unteren Perms. Siebentes Heft, Palaeontographica Abteilung B., 85:458654.Google Scholar
Florin, R. 1945. Die Koniferen des Oberkarbons und des Unteren Perms. Achtes Heft, Palaeontographica Abteilung B., 85:655729.Google Scholar
Florin, R. 1951. Evolution in cordaites and conifers. Acta Horti Bergiani, 15:285388.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani, 20(4):122312.Google Scholar
Grauvogel-Stamm, L. 1969. Nouveaux types d'organes reproducteurs mǎles de conifères du Grès à Voltzia (Trias inférieur) des Vosges. Bulletin Serves. Carte Géologique Alsace Lorraine. 22:93120.CrossRefGoogle Scholar
Grauvogel-Stamm, L. 1978. La flore du Gres a Voltzia (Buntsandstein Superieur) des Vosges du Nord (France), morphologie, anatomie, interpretations phylogenique et paleogeographique. Memoire Sciences Geologiques, Universite Louis Pasteur de Strasbourg Institut de Geologie 50, 225 p.Google Scholar
Grauvogel-Stamm, L., and Schaarschmidt, F. 1979. Zur morphologie und Taxonomie von Masculostrobus SEWARD und anderen formgattungen peltater männlicher koniferenblüten. Senckenbergiana Lethaea 60:137.Google Scholar
Kerp, J. H. E., and Clement-Westerhof, J. A. 1991. Aspects of Permian palaeobotany and palynology. XII. The form genus Walchiostrobus Florin reconsidered. Neues Jahrbuch Geologie e. Paläontologie, 183:257268.Google Scholar
Kerp, J. H. F., Poort, R. J., Swinkels, H. A. J. M., and Verwer, R. 1990. Aspects of Permian palaeobotany and palynology. IX. Conifer-dominated Rotliegend floras from the Saar-Nahe Basin (?Late Carboniferous-Early Permian; SW-Germany) with special reference to the reproductive biology of early conifers. Review of Palaeobotany and Palynology, 62:205248.Google Scholar
Mapes, G. 1983. Permineralized Lebachia pollen cones. American Journal of Botany, 70:74.Google Scholar
Mapes, G. 1987. Ovule inversion in the earliest conifers. American Journal of Botany, 74:12051210.CrossRefGoogle Scholar
Mapes, G., and Mapes, R. H. (eds.) 1988. Regional geology and paleontology of upper Paleozoic Hamilton quarry area in southeastern Kansas. Kansas Geological Survey Guidebook Series 6, 273 p.Google Scholar
Mapes, G., and Rothwell, G. W. 1984. Permineralized ovulate cones of Lebachia from Late Paleozoic limestones of Kansas. Palaeontology, 27:6994.Google Scholar
Mapes, G., and Rothwell, G. W. 1988. Diversity among Hamilton conifers. In Mapes, G. and Mapes, R. H. (eds.), Regional geology and paleontology of Upper Paleozoic Hamilton quarry area in southeastern Kansas. Kansas Geological Survey Guidebook Series, 6:225244.Google Scholar
Mapes, G., and Rothwell, G. W. 1991. Structure and relationships of primitive conifers. Neues Jahrbuch Geologie et Paläontogue, 183:269287.Google Scholar
Mapes, G., Rothwell, G. W. and Haworth, M. T. 1989. The evolution of seed dormancy. Nature, 337:645646.CrossRefGoogle Scholar
Miller, C. N. 1988. The origin of modern conifer families. In Beck, C. B. (ed.), Origin and Evolution of Gymnosperms. p. 448486. Columbia University Press.Google Scholar
Miller, C. N., and Brown, J. T. 1973. A new voltzialean cone bearing seeds with embryos from the Permian of Texas. American Journal of Botany, 60:561569.CrossRefGoogle Scholar
Rothwell, G. W. 1982. New interpretations of the earliest conifers. Review of Palaeobotany Palynology, 37:728.CrossRefGoogle Scholar
Rothwell, G. W., and Mapes, G. 1988. Vegetation of a Paleozoic conifer community. In Mapes, G. and Mapes, R. H. (eds.), Regional geology and paleontology of Upper Paleozoic Hamilton quarry area in southeastern Kansas. Kansas Geological Survey Guidebook Series, 6:213223.Google Scholar
Rothwell, G. W., and Serbet, R. 1994. Lignophyte phylogeny and the evolution of spermatophytes: a numerical cladistic analysis. Systematic Botany, 19:443482.CrossRefGoogle Scholar
Schaarschmidt, F., and Maubeuge, P. L. 1969. Eine mannliche Gymnospermen-Fruktification aus dem Voltziensandstein (Untere Trias) der Vogesen, Senckenbergiana lethaea, 50:377397.Google Scholar
Schweitzer, H. J. 1963. Der weibliche Zapfen von Pseudovoltzia liebeana und seine Bedeutung für die Phylogenie der Koniferen. Paleontographica Abteilung B, 113:129.Google Scholar
Serlin, B. S., Delevoryas, T., and Weber, R. 1981. A new conifer pollen cone from the Upper Cretaceous of Coahuila. Mexico. Review of Palaeobotany and Palynology, 31:241248.CrossRefGoogle Scholar
Taggart, R. E., and Ghavidel-Syooki, M. 1988. Palynology of the conifer macrofossil horizon. In Mapes, G. and Mapes, R. H. (eds.), Regional geology and paleontology of upper Paleozoic Hamilton quarry area in southeastern Kansas. Kansas Geological Survey Guidebook Series, 6:245252.Google Scholar
Winston, R. B. 1984. The upper Pennsylvanian conifer Walchia garnettensis: Structure and affinities. Palaeontographica Abteilung B., 194:97108.Google Scholar