Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T00:31:11.913Z Has data issue: false hasContentIssue false

Pennsylvanian-Permian Cheiloceratacean Ammonoid Families Maximitidae and Pseudohaloritidae

Published online by Cambridge University Press:  22 December 2017

T. J. Frest
Affiliation:
Department of Geology, The University of Iowa, Iowa City 52242
Brian F. Glenister
Affiliation:
Department of Geology, The University of Iowa, Iowa City 52242
W. M. Furnish
Affiliation:
Department of Geology, The University of Iowa, Iowa City 52242

Abstract

Cheilocerataceae are unique among Pennsylvanian and Permian ammonoids in having maintained the primitive sutural condition in which the ventral lobe remained entire or, in rare cases, incipiently bifid. The mature ventral lobe of all contemporary ammonoids is either prominently bifid or weakly trifid. Identity of these younger cheilocerataceans is confirmed by an additional distinctive feature, the phyletic migration of the siphuncle from a ventral position to lie close to the dorsum within the dorsal septal flexure.

Transformation of the ancestors, the Mississippian cheiloceratacean family Prionoceratidae, to produce the root-stock of post-Mississippian Cheilocerataceae was by progenesis (paedomorphosis and neoteny). This involved linear size reduction by a factor of ten, and retention to maturity of the rounded (formerly juvenile) character of the lateral lobe.

Two families are represented in the Pennsylvanian, both probably derived from a common prionoceratid ancestor. The monotypic Maximitidae (Atokan-Missourian) are distinguished by ontogenetic migration of the siphuncle from a central to ventral-marginal position, with concurrent development of incipient bifurcation of the ventral lobe in some forms. The more diverse and longer ranging Pseudohaloritidae are represented in the Pennsylvanian (Missourian and younger) by Neoaganides, an unornamented form with simple sutures that persisted to the extinction of the superfamily in the highest Permian Changhsingian Stage. During the Permian, the Pseudohaloritidae underwent explosive diversification, displayed especially by the Wordian endemics of South China. This involved bizarre combinations of shell features that are duplicated by some Mesozoic ammonoids but are rare or unique for the Paleozoic. Included are coarse ribs and nodes, and mature modifications comprising divergent coiling, one or two subterminal constrictions, and one or two pairs of spectacular lappets. In addition both the lobes and saddles may be irregularly but extremely denticulate to give “ceratitic” and “ammonitic” sutures, and the siphuncle is generally close to the dorsum. No fully plausible explanation has yet been provided for these late evolutionary developments.

All previously described taxa in the Maximitidae and Pseudohaloritidae are reviewed. New taxa include a species of Maximites that is dimorphic, three new forms of Neoaganides from the Permian of Texas and Iran, plus the first representatives of Pseudohalorites and Shouchangoceras from North America. A new genus (Sosioceras) is established for Brancoceras pygmaeum Gemmellaro. It differs from Neoaganides in having a doubly constricted aperture at maturity and well developed runzelschicht. This monotypic genus is dimorphic also, and strong dimorphism may be characteristic of Permian Pseudohaloritidae.

Sutures provide the basis for subdivision of the Pseudohaloritidae into subfamilies. The Shouchangoceratinae are “goniatitic,” the Pseudohaloritinae are “ceratitic,” and the Lanceoloboceratinae are “ammonitic.” The inadequately known Yinoceratinae, referred previously to the Thalassoceratidae, are shown to be closely related to their geographic and stratigraphic associates, the Lanceoloboceratinae. It is doubtful whether separation of the two subfamilies can be maintained. Although features such as sculpture and degree of development of serration of the suture are highly variable at the species level, gross changes in these features and in the form of the mature aperture are nonetheless the best taxobases for genera and species since the number of lobes remained constant at eight.

Type
Research Article
Copyright
Copyright © 1981, The Society of Economic 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkell, W. J., Kummel, B. and Wright, C. W. 1957. Mesozoic Ammonoidea, p. 80465. In Arkell, W. J. et al., Treatise on Invertebrate Paleontology, Part L, Mollusca 4. Geol. Soc. America and Univ. Kansas Press.Google Scholar
Beghtel, F. W. 1959. Ammonoid fauna of the Pennsylvanian Wewoka Formation of Oklahoma. 128 p. , Univ. Iowa. Google Scholar
Beghtel, F. W. 1962. Desmoinesian ammonoids of Oklahoma. 390 p. , Univ. Iowa. Google Scholar
Callomon, J. H. 1963. Sexual dimorphism in Jurassic ammonites. Leichester Lit. Philos. Soc. Trans., 57:2156.Google Scholar
Chamberlain, J. A. Jr. and Westermann, G. E. G. 1976. Hydrodynamic properties of cephalopod shell ornament. Paleobiol. 2:316331.CrossRefGoogle Scholar
Collins, D., Westermann, G. E. G. and Ward, P. 1978. The mature Nautilus: its shell and buoyancy. Geol. Soc. America, Abstr. with Programs, 10:341.Google Scholar
Cys, J. W. et al. 1976. Lexicon of Permian stratigraphy in West Texas. West Texas Geol. Soc. 348 p.Google Scholar
Davis, R. A., Furnish, W. M. and Glenister, B. F. 1969. Mature modification and dimorphism in late Paleozoic ammonoids. In Westermann, G. E. G. (ed.), Sexual dimorphism in fossil Metazoa and taxonomic implications. Int. Union of Geol. Sci., ser. A, no. 1, p. 101110.Google Scholar
Erben, H. K. 1960. Primitive Ammonoidea aus dem Unterdevon Frankreichs und Deutschlands. N. Jb. Geol. Paläontol., Abh. 110:1128.Google Scholar
Erben, H. K. 1964. Die evolution der ältesten Ammonoidea. N. Jb. Geol. Paläontol., Abh. 120:107212.Google Scholar
Furnish, W. M. and Glenister, B. F. 1964. Paleoecology, p. 114124. In Teichert, C. et al., Treatise on Invertebrate Paleontology, Part K, Mollusca 3. Geol. Soc. America and Univ. Kansas Press.Google Scholar
Gemmellaro, G. G. 1888. La fauna del calcari con Fusulina della valle del Fiume Sosio nella provincia di Palermo, Appendice fascio 1. Giornale sci. nat. econ., 20:936.Google Scholar
Glenister, B. F., Windle, D. L. Jr. and Furnish, W. M. 1973. Australasian Metalegoceratidae (Lower Permian ammonoids). J. Paleontol., 47:10311043.Google Scholar
Glenister, B. F., Nassichuk, W. W. and Furnish, W. M. 1979. Ammonoid successions in the Permian of China. Geol. Magazine 116:231239.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Belknap Press, Harvard University. 501 p.Google Scholar
Gümbel, C. W. 1863. Ueber Clymenien in dem Uebergangsgebilden des Fichtelgebirges. Palaeontog., 11:85165.Google Scholar
House, M. R. 1971. The goniatite wrinkle-layer. Smithsonian Cont. Paleobiol., 3:2332.Google Scholar
Hyatt, A. 1884. Genera of fossil cephalopods. Boston Soc. Nat. Hist. Proc. 22:273338.Google Scholar
Kennedy, W. J. 1977. Ammonite evolution, p. 251304. In Hallam, A. (ed.), Patterns of Evolution. Elsevier: Amsterdam.Google Scholar
Kennedy, W. J. and Cobban, W. A. 1976. The role of ammonites in biostratigraphy, p. 309320. In Kaufmann, E. G. and Hazel, J. E. (ed.), Concepts and methods in Biostratigraphy. Dowden, Hutchinson, & Ross, Stroudsburg, PA.Google Scholar
Mapes, R. H. 1979. Carboniferous and Permian Bactritoidea (Cephalopoda) in North America. Univ. Kansas Paleontol. Contr. Article 64, 75 p.Google Scholar
Miller, A. K. and Downs, H. R. 1950. Ammonoids of the Pennsylvanian Finis Shale of Texas. Jour. Paleontol., 24:185218.Google Scholar
Miller, A. K. and Furnish, W. M. 1957. Permian ammonoids from southern Arabia. Jour. Paleontol., 31:10431051.Google Scholar
Miller, A. K., Furnish., W. M. and Schindewolf, O. H. 1957. Paleozoic Ammonoidea, p. L11L79. In Arkell, W. J. et al. Treatise on Invertebrate Paleontology, Part L, Mollusca 4. Geol. Soc. America and University Kansas Press.Google Scholar
Miller, A. K., and Owen, J. B. 1939. An ammonoid fauna from the Lower Pennsylvanian Cherokee Formation of Missouri. Jour. Paleontol., 13:141162.Google Scholar
Nassichuk, W. W. 1975. Carboniferous ammonoids and stratigraphy, Canadian Arctic Archipelago. Geol. Surv. Canada, Mem. 237, 240 p.Google Scholar
Plummer, F. B. and Scott, G. 1937. Upper Paleozoic ammonites in Texas. Texas University Bull. 3701, 516 p.Google Scholar
Ruzhentsev, V. E. 1950. Verkhnekamennougol'nye ammonity Urala. Akad. Sci. USSR, Paleontol. Inst. Trudy 29, 227 p.Google Scholar
Ruzhentsev, V. E. 1951. Nizhnepermskie ammonity Yuzhnogo Urala. I. Ammonity sakmarskogo yarusa. Ibid. 33, 188 p.Google Scholar
Ruzhentsev, V. E. 1957. Filogeneticheskaya sistema paleozoiskikh ammonoidei. Byulleten' Moskovskogo Obshchestva Ispytatelie Prirody, otdel geologicheskii, 32(2):4964.Google Scholar
Ruzhentsev, V. E. 1960a. Ammonoid classification problems. J. Paleontol. 34:609619.Google Scholar
Ruzhentsev, V. E. 1960b. Printsipy sistematiki, sistema i filogeniya paleozoiskikh ammonoidei. Akad. Sci. USSR, Paleontol. Inst. Trudy 83, 331 p.Google Scholar
Ruzhentsev, V. E. (ed.). 1962. Mollusca-Cephalopoda I. Osnovy paleontologii, 5, Izdatelstevo Akademii Nauk USSR, 438 p.Google Scholar
Saunders, W. B. and Spinosa, C. 1978. Sexual dimorphism in Nautilus from Palau. Paleobiol., 4:349358.Google Scholar
Schindewolf, O. H. 1923. Beiträge zur Kenntnis des Paläozoicums in Oberfranken, Ossthüringen und dem Sächsischen Vogtlande. N. Jb. Mineral. Beil.-Bd. 49:250509.Google Scholar
Senior, J. R. 1971. Wrinkle-layer structures in Jurassic Ammonites. Palaeontol., 14:107113.Google Scholar
Spinosa, C., Furnish, W. M. and Glenister, B. F. 1975. The Xenodiscidae, Permian ceratitoid ammonoids. J. Paleontol., 49:239283.Google Scholar
Stepanov, D. L., Golshani, F. and Stöcklin, J. 1969. Upper Permian and Permian-Triassic boundary in north Iran. Geol. Surv. Iran, Rept. 12, 72 p.Google Scholar
Stöcklin, J. 1972. Iran 1. Iran central, septentrional et oriental. Int. Geol. Congress. Comm. de Stratigraphie. Asie 3, fascicule 9b, p. 1283.Google Scholar
Teichert, C., Kummel, B. and Sweet, W. 1973. Permian-Triassic strata, Kuh-E-Ali Bashi, northwestern Iran. Harvard Mus. Comp. Zool. Bull., 145:359472.Google Scholar
Tozer, E. T. 1972. Observations on the shell structure of Triassic ammonoids. Palaeontol., 15:637654.Google Scholar
Wedekind, R. 1918. Die Genera der Palaeoammonoidea (Goniatiten). Palaeontog. 62:85184.Google Scholar
Yabe, H. 1920. Geographical Research in China 1911–1916. Reports. Palaeontology of southern China. Tokyo Geographical Society, 194 p., atlas. Google Scholar
Yabe, H. 1928. Notes on some interesting fossils from south China. Japanese Jour. Geol. Geog., Trans. Abstr., 6(1–2):1925.Google Scholar
Zhao, J. [formerly transliterated as Chao, K. K.]. 1940. Upper Paleozoic Cephalopoda from central Hunan, China. J. Paleontol., 14:6873.Google Scholar
Zhao, J. 1954. Permian cephalopods from Tanchiashan, Hunan. Acta Palaeontol. Sinica, 14:2458.Google Scholar
Zhao, J. 1965. The Permian ammonoid-bearing formations of South China. Scientia Sinica, 14:18131825.Google Scholar
Zhao, J., Liang, X. and Zheng, Z. 1978. Late Permian cephalopods of South China. Palaeontol. Sinica. 154 (new ser. B, no. 12), 194 p.Google Scholar
Zhao, J. and Zheng, Z. 1977. Ammonoids of the late Early Permian Period from western Zhejiang and northeastern Jiangxi. Acta Palaeontol. Sinica, 16:217251.Google Scholar
Zhou, Z. 1979. Distribution of the Early Permian Pseudohalorites-fauna (Cephalopoda) in Hunan with notes on some new genera. Ibid., 18:383394.Google Scholar